psychic / README.md
HannaAbiAkl's picture
Update README.md
e8ee2a1
|
raw
history blame
2.94 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: psychic
    results: []
datasets:
  - awalesushil/DBLP-QuAD
language:
  - en
library_name: transformers
pipeline_tag: question-answering

PSYCHIC alt text

PSYCHIC (Pre-trained SYmbolic CHecker In Context) is a model that is a fine-tuned version of distilbert-base-uncased on the DBLP-QuAD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

The model is trained to learn specific tokens from a question and its context to better determine the answer from the context. It is fine-tuned on the Extractive QA task from which it should return the answer to a knowledge graph question in the form of a SPARQL query. The advantage of PSYCHIC is that it leverages neuro-symbolic capabilities to validate query structures as well as LLM capacities to learn from context tokens.

Intended uses & limitations

This model is intended to be used with a question-context pair to determine the answer in the form of a SPARQL query.

Training and evaluation data

The DBLP-QuAD dataset is used for training and evaluation.

Example

Here's an example of the model capabilities:

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.001 1.0 1000 0.0001
0.0005 2.0 2000 0.0000
0.0002 3.0 3000 0.0000

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3