Bit-Llama2-jp-123M

This model was built by referring to the config in TinyLlama/TinyLlama-1.1B-Chat-v1.0, 123M The model is a pre-trained Bit-Llama2 of Parameters with only 1 epoch on a Japanese dataset. The dataset used is range3/wiki40b-ja.

  • Loss: 3.7091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 156
  • eval_batch_size: 156
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
19.3793 0.04 1000 5.3113
5.0921 0.08 2000 4.9641
4.8154 0.12 3000 4.7104
4.6664 0.16 4000 4.5876
4.5545 0.2 5000 4.5258
4.4743 0.24 6000 4.4283
4.4061 0.28 7000 4.3539
4.3117 0.32 8000 4.2735
4.2433 0.36 9000 4.2243
4.2037 0.4 10000 4.1739
4.1576 0.44 11000 4.1266
4.0925 0.48 12000 4.0624
4.0615 0.52 13000 4.0433
4.0151 0.56 14000 3.9993
3.9721 0.6 15000 3.9721
3.941 0.64 16000 3.9185
3.9 0.68 17000 3.8841
3.8719 0.72 18000 3.8539
3.8376 0.76 19000 3.8189
3.8131 0.8 20000 3.7946
3.7801 0.84 21000 3.7739
3.7604 0.88 22000 3.7515
3.7413 0.92 23000 3.7365
3.7265 0.96 24000 3.7231
3.7152 1.0 25000 3.7091

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
350
Safetensors
Model size
123M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for HachiML/Bit-Llama2-jp-123M

Finetuned
(168)
this model