HERIUN's picture
End of training
cd25594 verified
metadata
library_name: transformers
base_model: fleek/wav2vec-large-xlsr-korean
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-xlsr-korean-dialect-recognition
    results: []

wav2vec2-xlsr-korean-dialect-recognition

This model is a fine-tuned version of fleek/wav2vec-large-xlsr-korean on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5291
  • Accuracy: 0.8063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8542 0.0681 100 1.4936 0.3803
1.9555 0.1362 200 1.1916 0.5237
2.3132 0.2043 300 0.9826 0.6180
1.8724 0.2724 400 0.9512 0.6411
1.9331 0.3405 500 0.8138 0.6857
1.6761 0.4086 600 0.7749 0.6932
1.7902 0.4767 700 0.7694 0.7028
1.9041 0.5448 800 0.7199 0.7194
1.8659 0.6129 900 0.7010 0.7382
1.9123 0.6810 1000 0.6067 0.7753
1.2564 0.7491 1100 0.6073 0.7726
0.8368 0.8172 1200 0.6203 0.7729
1.1841 0.8853 1300 0.5312 0.7988
1.0372 0.9534 1400 0.5291 0.8063

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0