distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5500
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0014 1.0 113 1.8735 0.56
1.2705 2.0 226 1.2514 0.63
1.0219 3.0 339 1.1399 0.65
0.7034 4.0 452 0.8793 0.69
0.5411 5.0 565 0.6780 0.81
0.4426 6.0 678 0.5764 0.84
0.2074 7.0 791 0.5895 0.81
0.1131 8.0 904 0.5772 0.8
0.1932 9.0 1017 0.5552 0.82
0.0699 10.0 1130 0.5500 0.84

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
79
Safetensors
Model size
23.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Gyaneshere/distilhubert-finetuned-gtzan

Finetuned
(458)
this model

Dataset used to train Gyaneshere/distilhubert-finetuned-gtzan

Space using Gyaneshere/distilhubert-finetuned-gtzan 1

Evaluation results