GuiGel's picture
Add model trained with Flair
1f7228c
|
raw
history blame
713 Bytes
metadata
tags:
  - flair
  - token-classification
  - sequence-tagger-model

Demo: How to use in Flair

Requires:

  • Flair (pip install flair)
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("GuiGel/beto-uncased-flert-lstm-crf-meddocan")
# make example sentence
sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)