NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2557
  • Precision: 0.4943
  • Recall: 0.5046
  • F1: 0.4994
  • Accuracy: 0.9407

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.2423 0.1951 0.1433 0.1653 0.9109
No log 2.0 142 0.2177 0.2905 0.3474 0.3164 0.9138
No log 3.0 213 0.1822 0.3912 0.3701 0.3804 0.9325
No log 4.0 284 0.1845 0.3839 0.4367 0.4086 0.9298
No log 5.0 355 0.2033 0.4533 0.4271 0.4398 0.9367
No log 6.0 426 0.2005 0.4535 0.4736 0.4633 0.9365
No log 7.0 497 0.2297 0.4352 0.5155 0.4720 0.9321
0.1436 8.0 568 0.2236 0.4854 0.4656 0.4753 0.9395
0.1436 9.0 639 0.2335 0.4935 0.5101 0.5016 0.9397
0.1436 10.0 710 0.2413 0.4829 0.5075 0.4949 0.9405
0.1436 11.0 781 0.2557 0.4849 0.5239 0.5036 0.9383
0.1436 12.0 852 0.2557 0.4943 0.5046 0.4994 0.9407

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
15
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GuCuChiara/NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model

Finetuned
(18)
this model