NLP-HIBA2_DisTEMIST_fine_tuned_DistilBERT-pretrained-model

This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2224
  • Precision: 0.5553
  • Recall: 0.5163
  • F1: 0.5351
  • Accuracy: 0.9502

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.1767 0.4612 0.4905 0.4754 0.9399
No log 2.0 142 0.1696 0.5173 0.4400 0.4755 0.9481
No log 3.0 213 0.1782 0.5189 0.5290 0.5239 0.9485
No log 4.0 284 0.1928 0.5275 0.4988 0.5128 0.9475
No log 5.0 355 0.2020 0.5800 0.4782 0.5242 0.9512
No log 6.0 426 0.2091 0.5645 0.4849 0.5217 0.9506
No log 7.0 497 0.2035 0.5608 0.5095 0.5339 0.9511
0.0531 8.0 568 0.2150 0.5282 0.5385 0.5333 0.9484
0.0531 9.0 639 0.2224 0.5639 0.5068 0.5338 0.9507
0.0531 10.0 710 0.2224 0.5553 0.5163 0.5351 0.9502

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GuCuChiara/NLP-HIBA2_DisTEMIST_fine_tuned_DistilBERT-pretrained-model

Finetuned
(232)
this model