SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'GHt Sa [OI uco Bank\n\nvis Free Number: 180¢-193-9125 _\n\nDICGC INSURANCE UPTO 5 LAC\n\nBRANCH\n\nUCO Bank\nP NT\n(1) Consuitants are requested to note that all moneys\n\nremitted to the Bank should either be sent by Registered\nPost or handed over to the Cash Department, as no\n\n \n\nUco BANK\n\naq\n\nName\n\n"IFSC: uceaocotms\n' dress\n\nKICK Code: 7428029504\n\nHIRAKUD\n-HIRAKED BRARCH HIRAKUS\nProae:\n\nindividual (s) outside. the Cash Department has/have JHARY EIST\nauthority to receive cash. KADAMPOLA\n(2) The account-holder should insist on delivery of Pass Book HERAKUD\n‘ made uptodate as far as possible on the same date; a 6.8%\n- otherwise he should obtain a receipt indicating when the HIRAKYD PIN .#oBlss\nPass Book will be delivered.\n(3) Deposit Rules in vogue can be obtained by account-holder TET. WaT / Asst.\nfrom the Branch on request Q28501 19027145\nPB.NG. }\n\n \n\n \n\n \n\nfe er ee me\n\n \n\x0c'
  • ' \n\n= 2, ip\nO ~\nN 2\na\n: Y ve re ty\n) 3 x.\nNai] (F) my\n\n \n\ny Viayal chat aloala\nSH PPP ea [sys sys *\nas NB\n2\n=\n\ni x X we\na. = Xt +\n— W\nx 2
1
  • '. Ae - PR CSeathetn & 3)\n" J She ase 9 Pao\n\n‘s lad Bank Afr o Steppe\nIN

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/CASH_AND_BANK_INVOICE")
# Run inference
preds = model(" 
")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 201.2534 4241
Label Training Sample Count
0 113
1 33

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0023 1 0.3054 -
0.1142 50 0.1162 -
0.2283 100 0.0043 -
0.3425 150 0.0015 -
0.4566 200 0.0014 -
0.5708 250 0.0008 -
0.6849 300 0.0013 -
0.7991 350 0.001 -
0.9132 400 0.0004 -
1.0274 450 0.0008 -
1.1416 500 0.0008 -
1.2557 550 0.0011 -
1.3699 600 0.0008 -
1.4840 650 0.0007 -
1.5982 700 0.0005 -
1.7123 750 0.0005 -
1.8265 800 0.0007 -
1.9406 850 0.0005 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
8
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gopal2002/CASH_AND_BANK_INVOICE

Finetuned
(139)
this model

Evaluation results