|
--- |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Weyaxi/Einstein-v5-v0.2-7B |
|
- argilla/CapybaraHermes-2.5-Mistral-7B |
|
base_model: |
|
- Weyaxi/Einstein-v5-v0.2-7B |
|
- argilla/CapybaraHermes-2.5-Mistral-7B |
|
--- |
|
|
|
# J.O.S.I.E.3-Beta10-7B-slerp |
|
|
|
J.O.S.I.E.3-Beta10-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Weyaxi/Einstein-v5-v0.2-7B](https://huggingface.co/Weyaxi/Einstein-v5-v0.2-7B) |
|
* [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: Weyaxi/Einstein-v5-v0.2-7B |
|
layer_range: [0, 32] |
|
- model: argilla/CapybaraHermes-2.5-Mistral-7B |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: argilla/CapybaraHermes-2.5-Mistral-7B |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## Evaluation |
|
|
|
```json |
|
{ |
|
"all": { |
|
"acc": 0.6312165296664113, |
|
"acc_stderr": 0.03236370559394293, |
|
"acc_norm": 0.6324439925872714, |
|
"acc_norm_stderr": 0.033019786616359854, |
|
"mc1": 0.39657282741738065, |
|
"mc1_stderr": 0.017124930942023518, |
|
"mc2": 0.5688038233837539, |
|
"mc2_stderr": 0.015263125204118244 |
|
}, |
|
"harness|arc:challenge|25": { |
|
"acc": 0.6126279863481229, |
|
"acc_stderr": 0.014235872487909869, |
|
"acc_norm": 0.6348122866894198, |
|
"acc_norm_stderr": 0.014070265519268802 |
|
}, |
|
"harness|hellaswag|10": { |
|
"acc": 0.643397729535949, |
|
"acc_stderr": 0.00478016987333285, |
|
"acc_norm": 0.8378809002190799, |
|
"acc_norm_stderr": 0.0036780679944244735 |
|
}, |
|
"harness|hendrycksTest-abstract_algebra|5": { |
|
"acc": 0.32, |
|
"acc_stderr": 0.046882617226215034, |
|
"acc_norm": 0.32, |
|
"acc_norm_stderr": 0.046882617226215034 |
|
}, |
|
"harness|hendrycksTest-anatomy|5": { |
|
"acc": 0.6074074074074074, |
|
"acc_stderr": 0.0421850621536888, |
|
"acc_norm": 0.6074074074074074, |
|
"acc_norm_stderr": 0.0421850621536888 |
|
}, |
|
"harness|hendrycksTest-astronomy|5": { |
|
"acc": 0.6907894736842105, |
|
"acc_stderr": 0.037610708698674805, |
|
"acc_norm": 0.6907894736842105, |
|
"acc_norm_stderr": 0.037610708698674805 |
|
}, |
|
"harness|hendrycksTest-business_ethics|5": { |
|
"acc": 0.61, |
|
"acc_stderr": 0.04902071300001975, |
|
"acc_norm": 0.61, |
|
"acc_norm_stderr": 0.04902071300001975 |
|
}, |
|
"harness|hendrycksTest-clinical_knowledge|5": { |
|
"acc": 0.6754716981132075, |
|
"acc_stderr": 0.02881561571343211, |
|
"acc_norm": 0.6754716981132075, |
|
"acc_norm_stderr": 0.02881561571343211 |
|
}, |
|
"harness|hendrycksTest-college_biology|5": { |
|
"acc": 0.7291666666666666, |
|
"acc_stderr": 0.03716177437566017, |
|
"acc_norm": 0.7291666666666666, |
|
"acc_norm_stderr": 0.03716177437566017 |
|
}, |
|
"harness|hendrycksTest-college_chemistry|5": { |
|
"acc": 0.47, |
|
"acc_stderr": 0.05016135580465919, |
|
"acc_norm": 0.47, |
|
"acc_norm_stderr": 0.05016135580465919 |
|
}, |
|
"harness|hendrycksTest-college_computer_science|5": { |
|
"acc": 0.48, |
|
"acc_stderr": 0.050211673156867795, |
|
"acc_norm": 0.48, |
|
"acc_norm_stderr": 0.050211673156867795 |
|
}, |
|
"harness|hendrycksTest-college_mathematics|5": { |
|
"acc": 0.34, |
|
"acc_stderr": 0.04760952285695235, |
|
"acc_norm": 0.34, |
|
"acc_norm_stderr": 0.04760952285695235 |
|
}, |
|
"harness|hendrycksTest-college_medicine|5": { |
|
"acc": 0.6011560693641619, |
|
"acc_stderr": 0.037336266553835096, |
|
"acc_norm": 0.6011560693641619, |
|
"acc_norm_stderr": 0.037336266553835096 |
|
}, |
|
"harness|hendrycksTest-college_physics|5": { |
|
"acc": 0.29411764705882354, |
|
"acc_stderr": 0.04533838195929775, |
|
"acc_norm": 0.29411764705882354, |
|
"acc_norm_stderr": 0.04533838195929775 |
|
}, |
|
"harness|hendrycksTest-computer_security|5": { |
|
"acc": 0.72, |
|
"acc_stderr": 0.045126085985421276, |
|
"acc_norm": 0.72, |
|
"acc_norm_stderr": 0.045126085985421276 |
|
}, |
|
"harness|hendrycksTest-conceptual_physics|5": { |
|
"acc": 0.5659574468085107, |
|
"acc_stderr": 0.03240038086792747, |
|
"acc_norm": 0.5659574468085107, |
|
"acc_norm_stderr": 0.03240038086792747 |
|
}, |
|
"harness|hendrycksTest-econometrics|5": { |
|
"acc": 0.5, |
|
"acc_stderr": 0.047036043419179864, |
|
"acc_norm": 0.5, |
|
"acc_norm_stderr": 0.047036043419179864 |
|
}, |
|
"harness|hendrycksTest-electrical_engineering|5": { |
|
"acc": 0.5448275862068965, |
|
"acc_stderr": 0.04149886942192117, |
|
"acc_norm": 0.5448275862068965, |
|
"acc_norm_stderr": 0.04149886942192117 |
|
}, |
|
"harness|hendrycksTest-elementary_mathematics|5": { |
|
"acc": 0.4021164021164021, |
|
"acc_stderr": 0.02525303255499769, |
|
"acc_norm": 0.4021164021164021, |
|
"acc_norm_stderr": 0.02525303255499769 |
|
}, |
|
"harness|hendrycksTest-formal_logic|5": { |
|
"acc": 0.42063492063492064, |
|
"acc_stderr": 0.04415438226743744, |
|
"acc_norm": 0.42063492063492064, |
|
"acc_norm_stderr": 0.04415438226743744 |
|
}, |
|
"harness|hendrycksTest-global_facts|5": { |
|
"acc": 0.39, |
|
"acc_stderr": 0.04902071300001975, |
|
"acc_norm": 0.39, |
|
"acc_norm_stderr": 0.04902071300001975 |
|
}, |
|
"harness|hendrycksTest-high_school_biology|5": { |
|
"acc": 0.7774193548387097, |
|
"acc_stderr": 0.02366421667164251, |
|
"acc_norm": 0.7774193548387097, |
|
"acc_norm_stderr": 0.02366421667164251 |
|
}, |
|
"harness|hendrycksTest-high_school_chemistry|5": { |
|
"acc": 0.4876847290640394, |
|
"acc_stderr": 0.035169204442208966, |
|
"acc_norm": 0.4876847290640394, |
|
"acc_norm_stderr": 0.035169204442208966 |
|
}, |
|
"harness|hendrycksTest-high_school_computer_science|5": { |
|
"acc": 0.68, |
|
"acc_stderr": 0.04688261722621505, |
|
"acc_norm": 0.68, |
|
"acc_norm_stderr": 0.04688261722621505 |
|
}, |
|
"harness|hendrycksTest-high_school_european_history|5": { |
|
"acc": 0.7818181818181819, |
|
"acc_stderr": 0.03225078108306289, |
|
"acc_norm": 0.7818181818181819, |
|
"acc_norm_stderr": 0.03225078108306289 |
|
}, |
|
"harness|hendrycksTest-high_school_geography|5": { |
|
"acc": 0.803030303030303, |
|
"acc_stderr": 0.02833560973246336, |
|
"acc_norm": 0.803030303030303, |
|
"acc_norm_stderr": 0.02833560973246336 |
|
}, |
|
"harness|hendrycksTest-high_school_government_and_politics|5": { |
|
"acc": 0.8549222797927462, |
|
"acc_stderr": 0.025416343096306433, |
|
"acc_norm": 0.8549222797927462, |
|
"acc_norm_stderr": 0.025416343096306433 |
|
}, |
|
"harness|hendrycksTest-high_school_macroeconomics|5": { |
|
"acc": 0.6435897435897436, |
|
"acc_stderr": 0.02428314052946731, |
|
"acc_norm": 0.6435897435897436, |
|
"acc_norm_stderr": 0.02428314052946731 |
|
}, |
|
"harness|hendrycksTest-high_school_mathematics|5": { |
|
"acc": 0.32592592592592595, |
|
"acc_stderr": 0.028578348365473072, |
|
"acc_norm": 0.32592592592592595, |
|
"acc_norm_stderr": 0.028578348365473072 |
|
}, |
|
"harness|hendrycksTest-high_school_microeconomics|5": { |
|
"acc": 0.6638655462184874, |
|
"acc_stderr": 0.030684737115135367, |
|
"acc_norm": 0.6638655462184874, |
|
"acc_norm_stderr": 0.030684737115135367 |
|
}, |
|
"harness|hendrycksTest-high_school_physics|5": { |
|
"acc": 0.31788079470198677, |
|
"acc_stderr": 0.038020397601079024, |
|
"acc_norm": 0.31788079470198677, |
|
"acc_norm_stderr": 0.038020397601079024 |
|
}, |
|
"harness|hendrycksTest-high_school_psychology|5": { |
|
"acc": 0.8220183486238533, |
|
"acc_stderr": 0.01639943636661289, |
|
"acc_norm": 0.8220183486238533, |
|
"acc_norm_stderr": 0.01639943636661289 |
|
}, |
|
"harness|hendrycksTest-high_school_statistics|5": { |
|
"acc": 0.5185185185185185, |
|
"acc_stderr": 0.034076320938540516, |
|
"acc_norm": 0.5185185185185185, |
|
"acc_norm_stderr": 0.034076320938540516 |
|
}, |
|
"harness|hendrycksTest-high_school_us_history|5": { |
|
"acc": 0.803921568627451, |
|
"acc_stderr": 0.027865942286639318, |
|
"acc_norm": 0.803921568627451, |
|
"acc_norm_stderr": 0.027865942286639318 |
|
}, |
|
"harness|hendrycksTest-high_school_world_history|5": { |
|
"acc": 0.7974683544303798, |
|
"acc_stderr": 0.026160568246601453, |
|
"acc_norm": 0.7974683544303798, |
|
"acc_norm_stderr": 0.026160568246601453 |
|
}, |
|
"harness|hendrycksTest-human_aging|5": { |
|
"acc": 0.6995515695067265, |
|
"acc_stderr": 0.03076935200822914, |
|
"acc_norm": 0.6995515695067265, |
|
"acc_norm_stderr": 0.03076935200822914 |
|
}, |
|
"harness|hendrycksTest-human_sexuality|5": { |
|
"acc": 0.7480916030534351, |
|
"acc_stderr": 0.03807387116306085, |
|
"acc_norm": 0.7480916030534351, |
|
"acc_norm_stderr": 0.03807387116306085 |
|
}, |
|
"harness|hendrycksTest-international_law|5": { |
|
"acc": 0.8016528925619835, |
|
"acc_stderr": 0.036401182719909456, |
|
"acc_norm": 0.8016528925619835, |
|
"acc_norm_stderr": 0.036401182719909456 |
|
}, |
|
"harness|hendrycksTest-jurisprudence|5": { |
|
"acc": 0.8055555555555556, |
|
"acc_stderr": 0.038260763248848646, |
|
"acc_norm": 0.8055555555555556, |
|
"acc_norm_stderr": 0.038260763248848646 |
|
}, |
|
"harness|hendrycksTest-logical_fallacies|5": { |
|
"acc": 0.754601226993865, |
|
"acc_stderr": 0.03380939813943354, |
|
"acc_norm": 0.754601226993865, |
|
"acc_norm_stderr": 0.03380939813943354 |
|
}, |
|
"harness|hendrycksTest-machine_learning|5": { |
|
"acc": 0.44642857142857145, |
|
"acc_stderr": 0.04718471485219588, |
|
"acc_norm": 0.44642857142857145, |
|
"acc_norm_stderr": 0.04718471485219588 |
|
}, |
|
"harness|hendrycksTest-management|5": { |
|
"acc": 0.7961165048543689, |
|
"acc_stderr": 0.039891398595317706, |
|
"acc_norm": 0.7961165048543689, |
|
"acc_norm_stderr": 0.039891398595317706 |
|
}, |
|
"harness|hendrycksTest-marketing|5": { |
|
"acc": 0.8589743589743589, |
|
"acc_stderr": 0.02280138253459754, |
|
"acc_norm": 0.8589743589743589, |
|
"acc_norm_stderr": 0.02280138253459754 |
|
}, |
|
"harness|hendrycksTest-medical_genetics|5": { |
|
"acc": 0.73, |
|
"acc_stderr": 0.044619604333847394, |
|
"acc_norm": 0.73, |
|
"acc_norm_stderr": 0.044619604333847394 |
|
}, |
|
"harness|hendrycksTest-miscellaneous|5": { |
|
"acc": 0.8084291187739464, |
|
"acc_stderr": 0.014072859310451949, |
|
"acc_norm": 0.8084291187739464, |
|
"acc_norm_stderr": 0.014072859310451949 |
|
}, |
|
"harness|hendrycksTest-moral_disputes|5": { |
|
"acc": 0.7312138728323699, |
|
"acc_stderr": 0.023868003262500104, |
|
"acc_norm": 0.7312138728323699, |
|
"acc_norm_stderr": 0.023868003262500104 |
|
}, |
|
"harness|hendrycksTest-moral_scenarios|5": { |
|
"acc": 0.24916201117318434, |
|
"acc_stderr": 0.014465893829859924, |
|
"acc_norm": 0.24916201117318434, |
|
"acc_norm_stderr": 0.014465893829859924 |
|
}, |
|
"harness|hendrycksTest-nutrition|5": { |
|
"acc": 0.7124183006535948, |
|
"acc_stderr": 0.02591780611714716, |
|
"acc_norm": 0.7124183006535948, |
|
"acc_norm_stderr": 0.02591780611714716 |
|
}, |
|
"harness|hendrycksTest-philosophy|5": { |
|
"acc": 0.7106109324758842, |
|
"acc_stderr": 0.025755865922632945, |
|
"acc_norm": 0.7106109324758842, |
|
"acc_norm_stderr": 0.025755865922632945 |
|
}, |
|
"harness|hendrycksTest-prehistory|5": { |
|
"acc": 0.6975308641975309, |
|
"acc_stderr": 0.02555765398186806, |
|
"acc_norm": 0.6975308641975309, |
|
"acc_norm_stderr": 0.02555765398186806 |
|
}, |
|
"harness|hendrycksTest-professional_accounting|5": { |
|
"acc": 0.49645390070921985, |
|
"acc_stderr": 0.02982674915328092, |
|
"acc_norm": 0.49645390070921985, |
|
"acc_norm_stderr": 0.02982674915328092 |
|
}, |
|
"harness|hendrycksTest-professional_law|5": { |
|
"acc": 0.4745762711864407, |
|
"acc_stderr": 0.01275371692910101, |
|
"acc_norm": 0.4745762711864407, |
|
"acc_norm_stderr": 0.01275371692910101 |
|
}, |
|
"harness|hendrycksTest-professional_medicine|5": { |
|
"acc": 0.6507352941176471, |
|
"acc_stderr": 0.028959755196824862, |
|
"acc_norm": 0.6507352941176471, |
|
"acc_norm_stderr": 0.028959755196824862 |
|
}, |
|
"harness|hendrycksTest-professional_psychology|5": { |
|
"acc": 0.6323529411764706, |
|
"acc_stderr": 0.019506291693954843, |
|
"acc_norm": 0.6323529411764706, |
|
"acc_norm_stderr": 0.019506291693954843 |
|
}, |
|
"harness|hendrycksTest-public_relations|5": { |
|
"acc": 0.6363636363636364, |
|
"acc_stderr": 0.046075820907199756, |
|
"acc_norm": 0.6363636363636364, |
|
"acc_norm_stderr": 0.046075820907199756 |
|
}, |
|
"harness|hendrycksTest-security_studies|5": { |
|
"acc": 0.7183673469387755, |
|
"acc_stderr": 0.028795185574291293, |
|
"acc_norm": 0.7183673469387755, |
|
"acc_norm_stderr": 0.028795185574291293 |
|
}, |
|
"harness|hendrycksTest-sociology|5": { |
|
"acc": 0.835820895522388, |
|
"acc_stderr": 0.026193923544454125, |
|
"acc_norm": 0.835820895522388, |
|
"acc_norm_stderr": 0.026193923544454125 |
|
}, |
|
"harness|hendrycksTest-us_foreign_policy|5": { |
|
"acc": 0.87, |
|
"acc_stderr": 0.033799766898963086, |
|
"acc_norm": 0.87, |
|
"acc_norm_stderr": 0.033799766898963086 |
|
}, |
|
"harness|hendrycksTest-virology|5": { |
|
"acc": 0.5180722891566265, |
|
"acc_stderr": 0.03889951252827216, |
|
"acc_norm": 0.5180722891566265, |
|
"acc_norm_stderr": 0.03889951252827216 |
|
}, |
|
"harness|hendrycksTest-world_religions|5": { |
|
"acc": 0.8187134502923976, |
|
"acc_stderr": 0.029547741687640038, |
|
"acc_norm": 0.8187134502923976, |
|
"acc_norm_stderr": 0.029547741687640038 |
|
}, |
|
"harness|truthfulqa:mc|0": { |
|
"mc1": 0.39657282741738065, |
|
"mc1_stderr": 0.017124930942023518, |
|
"mc2": 0.5688038233837539, |
|
"mc2_stderr": 0.015263125204118244 |
|
}, |
|
"harness|winogrande|5": { |
|
"acc": 0.7963693764798737, |
|
"acc_stderr": 0.011317798781626918 |
|
}, |
|
"harness|gsm8k|5": { |
|
"acc": 0.6103108415466262, |
|
"acc_stderr": 0.01343312323611072 |
|
} |
|
} |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Isaak-Carter/J.O.S.I.E.3-Beta10-7B-slerp" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |