StrangeMerges_46-7B-dare_ties
StrangeMerges_46-7B-dare_ties is a merge of the following models using LazyMergekit:
- Gille/StrangeMerges_45-7B-dare_ties
- kettleguts/zephyr-7b-beta_sparse05
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO
𧩠Configuration
models:
- model: Gille/StrangeMerges_45-7B-dare_ties
parameters:
weight: 0.4
density: 0.53
- model: kettleguts/zephyr-7b-beta_sparse05
parameters:
weight: 0.4
density: 0.53
- model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO
parameters:
weight: 0.2
density: 0.53
base_model: liminerity/M7-7b
merge_method: dare_ties
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_46-7B-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.96 |
AI2 Reasoning Challenge (25-Shot) | 67.24 |
HellaSwag (10-Shot) | 86.40 |
MMLU (5-Shot) | 62.17 |
TruthfulQA (0-shot) | 65.17 |
Winogrande (5-shot) | 79.48 |
GSM8k (5-shot) | 59.29 |
- Downloads last month
- 52
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Gille/StrangeMerges_46-7B-dare_ties
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard67.240
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard86.400
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard62.170
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard65.170
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.480
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard59.290