Gille's picture
Update README.md
7a55d23 verified
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Nexusflow/Starling-LM-7B-beta
- nlpguy/T3QM7
- AurelPx/Percival_01-7b-slerp
base_model:
- Nexusflow/Starling-LM-7B-beta
- nlpguy/T3QM7
- AurelPx/Percival_01-7b-slerp
---
# StrangeMerges_44-7B-dare_ties
StrangeMerges_44-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta)
* [nlpguy/T3QM7](https://huggingface.co/nlpguy/T3QM7)
* [AurelPx/Percival_01-7b-slerp](https://huggingface.co/AurelPx/Percival_01-7b-slerp)
## 🧩 Configuration
```yaml
models:
- model: Nexusflow/Starling-LM-7B-beta
parameters:
weight: 0.3
density: 0.53
- model: nlpguy/T3QM7
parameters:
weight: 0.2
density: 0.53
- model: AurelPx/Percival_01-7b-slerp
parameters:
weight: 0.5
density: 0.53
base_model: liminerity/M7-7b
merge_method: dare_ties
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_44-7B-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```