Gikubu_bert_base

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6490
  • Rmse: 0.7145

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rmse
0.6478 1.0 1000 0.7235 0.6742
0.5231 2.0 2000 0.6490 0.7145
0.3654 3.0 3000 0.9078 0.6434
0.2606 4.0 4000 1.2709 0.6738
0.1703 5.0 5000 1.6260 0.6595
0.0859 6.0 6000 1.9016 0.6592
0.0593 7.0 7000 1.9951 0.6656
0.0412 8.0 8000 2.1283 0.6771
0.0357 9.0 9000 2.1523 0.6819
0.028 10.0 10000 2.1537 0.6786

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3
Downloads last month
22
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Gikubu/Gikubu_bert_base

Finetuned
(2186)
this model

Space using Gikubu/Gikubu_bert_base 1