metadata
base_model: aubmindlab/bert-base-arabert
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
results: []
results
This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4485
- Accuracy: 0.7656
- Precision: 0.7688
- Recall: 0.7656
- F1: 0.7650
- Mrr: 0.8440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 320
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Mrr |
---|---|---|---|---|---|---|---|---|
0.9496 | 1.0 | 2250 | 0.9448 | 0.69 | 0.7197 | 0.69 | 0.6896 | 0.8003 |
0.7839 | 2.0 | 4500 | 0.8385 | 0.7 | 0.7302 | 0.7 | 0.7032 | 0.8101 |
0.4602 | 3.0 | 6750 | 0.9599 | 0.745 | 0.7524 | 0.745 | 0.7421 | 0.8346 |
0.4453 | 4.0 | 9000 | 0.9992 | 0.7325 | 0.7474 | 0.7325 | 0.7353 | 0.8342 |
0.3919 | 5.0 | 11250 | 1.2636 | 0.7425 | 0.7551 | 0.7425 | 0.7413 | 0.8312 |
0.313 | 6.0 | 13500 | 1.3639 | 0.7625 | 0.7679 | 0.7625 | 0.7628 | 0.8442 |
0.2186 | 7.0 | 15750 | 1.6281 | 0.745 | 0.7566 | 0.745 | 0.7461 | 0.8369 |
0.1942 | 8.0 | 18000 | 1.5611 | 0.775 | 0.7822 | 0.775 | 0.7752 | 0.8486 |
0.128 | 9.0 | 20250 | 1.7601 | 0.74 | 0.7504 | 0.74 | 0.7412 | 0.8341 |
0.0598 | 10.0 | 22500 | 1.6894 | 0.7725 | 0.7761 | 0.7725 | 0.7725 | 0.8548 |
0.0699 | 11.0 | 24750 | 1.8025 | 0.765 | 0.7698 | 0.765 | 0.7645 | 0.8460 |
0.0292 | 12.0 | 27000 | 1.8754 | 0.76 | 0.7621 | 0.76 | 0.7592 | 0.8451 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2