AraBERT-MADAR / README.md
GeorgeIbrahim's picture
AraBERT-MADAR
8499711 verified
|
raw
history blame
2.71 kB
metadata
base_model: aubmindlab/bert-base-arabert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4485
  • Accuracy: 0.7656
  • Precision: 0.7688
  • Recall: 0.7656
  • F1: 0.7650
  • Mrr: 0.8440

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 320
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Mrr
0.9496 1.0 2250 0.9448 0.69 0.7197 0.69 0.6896 0.8003
0.7839 2.0 4500 0.8385 0.7 0.7302 0.7 0.7032 0.8101
0.4602 3.0 6750 0.9599 0.745 0.7524 0.745 0.7421 0.8346
0.4453 4.0 9000 0.9992 0.7325 0.7474 0.7325 0.7353 0.8342
0.3919 5.0 11250 1.2636 0.7425 0.7551 0.7425 0.7413 0.8312
0.313 6.0 13500 1.3639 0.7625 0.7679 0.7625 0.7628 0.8442
0.2186 7.0 15750 1.6281 0.745 0.7566 0.745 0.7461 0.8369
0.1942 8.0 18000 1.5611 0.775 0.7822 0.775 0.7752 0.8486
0.128 9.0 20250 1.7601 0.74 0.7504 0.74 0.7412 0.8341
0.0598 10.0 22500 1.6894 0.7725 0.7761 0.7725 0.7725 0.8548
0.0699 11.0 24750 1.8025 0.765 0.7698 0.765 0.7645 0.8460
0.0292 12.0 27000 1.8754 0.76 0.7621 0.76 0.7592 0.8451

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2