metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9
wav2vec2-base-finetuned-gtzan
This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4268
- Accuracy: 0.9
Model description
I have made it for audio corse Unit 4 Hands on. Check my walktrough https://outleys.site/en/development/AI/hugging-face-audio-course-unit-4-handson-guide/
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1998 | 0.8850 | 100 | 2.0267 | 0.34 |
1.8078 | 1.7699 | 200 | 1.5776 | 0.51 |
1.4427 | 2.6549 | 300 | 1.3546 | 0.57 |
1.1903 | 3.5398 | 400 | 1.1145 | 0.63 |
0.8872 | 4.4248 | 500 | 0.9314 | 0.74 |
0.8191 | 5.3097 | 600 | 0.9010 | 0.73 |
0.6717 | 6.1947 | 700 | 0.8036 | 0.75 |
0.576 | 7.0796 | 800 | 0.9977 | 0.75 |
0.481 | 7.9646 | 900 | 0.7552 | 0.81 |
0.3211 | 8.8496 | 1000 | 0.6521 | 0.83 |
0.2719 | 9.7345 | 1100 | 0.5343 | 0.86 |
0.1922 | 10.6195 | 1200 | 0.6005 | 0.87 |
0.1799 | 11.5044 | 1300 | 0.6158 | 0.84 |
0.1159 | 12.3894 | 1400 | 0.5496 | 0.88 |
0.0883 | 13.2743 | 1500 | 0.5128 | 0.88 |
0.0536 | 14.1593 | 1600 | 0.4268 | 0.9 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1