GatinhoEducado's picture
Update README.md
7171e6e verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9

wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4268
  • Accuracy: 0.9

Model description

I have made it for audio corse Unit 4 Hands on. Check my walktrough https://outleys.site/en/development/AI/hugging-face-audio-course-unit-4-handson-guide/

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1998 0.8850 100 2.0267 0.34
1.8078 1.7699 200 1.5776 0.51
1.4427 2.6549 300 1.3546 0.57
1.1903 3.5398 400 1.1145 0.63
0.8872 4.4248 500 0.9314 0.74
0.8191 5.3097 600 0.9010 0.73
0.6717 6.1947 700 0.8036 0.75
0.576 7.0796 800 0.9977 0.75
0.481 7.9646 900 0.7552 0.81
0.3211 8.8496 1000 0.6521 0.83
0.2719 9.7345 1100 0.5343 0.86
0.1922 10.6195 1200 0.6005 0.87
0.1799 11.5044 1300 0.6158 0.84
0.1159 12.3894 1400 0.5496 0.88
0.0883 13.2743 1500 0.5128 0.88
0.0536 14.1593 1600 0.4268 0.9

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1