Llama-31-8B_task-2_120-samples_config-2_full_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2_auto and the GaetanMichelet/chat-120_ft_task-2_auto datasets. It achieves the following results on the evaluation set:

  • Loss: 0.9982

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
1.5395 0.9091 5 1.5119
1.4907 2.0 11 1.4172
1.3412 2.9091 16 1.3288
1.2282 4.0 22 1.2153
1.1141 4.9091 27 1.1136
1.0131 6.0 33 1.0540
1.0044 6.9091 38 1.0380
0.9748 8.0 44 1.0223
0.937 8.9091 49 1.0142
0.9481 10.0 55 1.0053
0.9023 10.9091 60 1.0011
0.8716 12.0 66 0.9987
0.849 12.9091 71 0.9982
0.836 14.0 77 1.0032
0.7365 14.9091 82 1.0176
0.7495 16.0 88 1.0259
0.6882 16.9091 93 1.0410
0.6301 18.0 99 1.0708
0.6114 18.9091 104 1.1067
0.591 20.0 110 1.1334

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-2_120-samples_config-2_full_auto

Adapter
(563)
this model

Collection including GaetanMichelet/Llama-31-8B_task-2_120-samples_config-2_full_auto