Llama-31-8B_task-1_60-samples_config-1_full_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1_auto dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.1899 0.8696 5 2.0616
1.9473 1.9130 11 1.7736
1.6049 2.9565 17 1.4599
1.1934 4.0 23 1.0350
0.8711 4.8696 28 0.9062
0.8035 5.9130 34 0.8637
0.7366 6.9565 40 0.8406
0.6995 8.0 46 0.8247
0.6613 8.8696 51 0.8259
0.5531 9.9130 57 0.8318
0.5061 10.9565 63 0.8598
0.3776 12.0 69 0.9167
0.264 12.8696 74 1.0158
0.1878 13.9130 80 1.1250
0.1417 14.9565 86 1.2038

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-1_60-samples_config-1_full_auto

Adapter
(499)
this model

Collection including GaetanMichelet/Llama-31-8B_task-1_60-samples_config-1_full_auto