GaetanMichelet's picture
End of training
1bf5080 verified
---
base_model: google/gemma-2-2b-it
datasets:
- GaetanMichelet/chat-60_ft_task-3
- GaetanMichelet/chat-120_ft_task-3
library_name: peft
license: gemma
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Gemma-2-2B_task-3_120-samples_config-2_full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gemma-2-2B_task-3_120-samples_config-2_full
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the GaetanMichelet/chat-60_ft_task-3 and the GaetanMichelet/chat-120_ft_task-3 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.9439
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.4237 | 0.9091 | 5 | 1.3857 |
| 1.3836 | 2.0 | 11 | 1.2989 |
| 1.2209 | 2.9091 | 16 | 1.2033 |
| 1.129 | 4.0 | 22 | 1.1133 |
| 1.0353 | 4.9091 | 27 | 1.0336 |
| 0.957 | 6.0 | 33 | 0.9890 |
| 0.9251 | 6.9091 | 38 | 0.9710 |
| 0.9012 | 8.0 | 44 | 0.9577 |
| 0.8677 | 8.9091 | 49 | 0.9495 |
| 0.8692 | 10.0 | 55 | 0.9446 |
| 0.8262 | 10.9091 | 60 | 0.9439 |
| 0.7985 | 12.0 | 66 | 0.9476 |
| 0.7634 | 12.9091 | 71 | 0.9547 |
| 0.7465 | 14.0 | 77 | 0.9688 |
| 0.6551 | 14.9091 | 82 | 0.9894 |
| 0.6593 | 16.0 | 88 | 1.0191 |
| 0.599 | 16.9091 | 93 | 1.0529 |
| 0.5401 | 18.0 | 99 | 1.0786 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1