|
--- |
|
base_model: google/gemma-2-2b-it |
|
datasets: |
|
- GaetanMichelet/chat-60_ft_task-2_auto |
|
- GaetanMichelet/chat-120_ft_task-2_auto |
|
library_name: peft |
|
license: gemma |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Gemma-2-2B_task-2_120-samples_config-2_auto |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Gemma-2-2B_task-2_120-samples_config-2_auto |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the GaetanMichelet/chat-60_ft_task-2_auto and the GaetanMichelet/chat-120_ft_task-2_auto datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6387 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 1.0219 | 0.9091 | 5 | 1.0249 | |
|
| 0.9649 | 2.0 | 11 | 0.8980 | |
|
| 0.7596 | 2.9091 | 16 | 0.8028 | |
|
| 0.6873 | 4.0 | 22 | 0.7306 | |
|
| 0.6361 | 4.9091 | 27 | 0.6907 | |
|
| 0.5688 | 6.0 | 33 | 0.6625 | |
|
| 0.5268 | 6.9091 | 38 | 0.6464 | |
|
| 0.4821 | 8.0 | 44 | 0.6387 | |
|
| 0.439 | 8.9091 | 49 | 0.6490 | |
|
| 0.3766 | 10.0 | 55 | 0.6785 | |
|
| 0.3045 | 10.9091 | 60 | 0.7300 | |
|
| 0.2261 | 12.0 | 66 | 0.8326 | |
|
| 0.1684 | 12.9091 | 71 | 0.9590 | |
|
| 0.097 | 14.0 | 77 | 1.1236 | |
|
| 0.0478 | 14.9091 | 82 | 1.2809 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |