Gabi00's picture
End of training
bb8ad6a verified
|
raw
history blame
2.71 kB
metadata
base_model: distil-whisper/distil-large-v3
datasets:
  - Gabi00/english-mistakes
language:
  - eng
library_name: peft
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Small Eng - Gabriel Mora
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: English-mistakes
          type: Gabi00/english-mistakes
          config: default
          split: validation
          args: 'config: eng, split: test'
        metrics:
          - type: wer
            value: 18.4360567877302
            name: Wer

Whisper Small Eng - Gabriel Mora

This model is a fine-tuned version of openai/whisper-small on the English-mistakes dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6839
  • Wer: 18.4361

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 28
  • eval_batch_size: 28
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5189 0.4444 500 1.1913 25.9108
1.1727 0.8889 1000 0.9531 24.5396
1.1341 1.3333 1500 0.8688 22.2761
1.0152 1.7778 2000 0.8174 20.8792
1.0589 2.2222 2500 0.7855 20.7595
0.9793 2.6667 3000 0.7611 22.2846
0.9594 3.1111 3500 0.7442 20.3860
1.0031 3.5556 4000 0.7303 18.5045
0.9525 4.0 4500 0.7199 18.1054
0.8729 4.4444 5000 0.7105 19.3170
1.0031 4.8889 5500 0.7028 19.7446
0.9273 5.3333 6000 0.6966 19.7189
0.9174 5.7778 6500 0.6896 18.4475
0.8842 6.2222 7000 0.6839 18.4361

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.4
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1