ViAVSP-LLM_v1.0 / resnet.py
tanthinhdt's picture
Upload model
3e1357a verified
raw
history blame
6.87 kB
import math
import torch
import torch.nn as nn
from collections import OrderedDict
def conv3x3(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d:
return nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
padding=1,
bias=False
)
def downsample_basic_block(
in_channels: int,
out_channels: int,
stride: int,
) -> nn.Sequential:
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels),
)
def downsample_basic_block_v2(
in_channels: int,
out_channels: int,
stride: int,
) -> nn.Sequential:
return nn.Sequential(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False,
),
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channels),
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(
self,
in_channels: int,
channels: int,
stride: int = 1,
downsample: nn.Sequential = None,
relu_type: str = "relu",
) -> None:
super(BasicBlock, self).__init__()
assert relu_type in ["relu", "prelu"]
self.conv1 = conv3x3(in_channels, channels, stride)
self.bn1 = nn.BatchNorm2d(channels)
if relu_type == "relu":
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
elif relu_type == "prelu":
self.relu1 = nn.PReLU(num_parameters=channels)
self.relu2 = nn.PReLU(num_parameters=channels)
else:
raise Exception("relu type not implemented")
self.conv2 = conv3x3(channels, channels)
self.bn2 = nn.BatchNorm2d(channels)
self.downsample = downsample
self.stride = stride
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu2(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block: nn.Module,
layers: list,
relu_type: str = "relu",
gamma_zero: bool = False,
avg_pool_downsample: bool = False,
) -> None:
self.in_channels = 64
self.relu_type = relu_type
self.gamma_zero = gamma_zero
self.downsample_block = (
downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block
)
super(ResNet, self).__init__()
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
if self.gamma_zero:
for m in self.modules():
if isinstance(m, BasicBlock):
m.bn2.weight.data.zero_()
def _make_layer(
self,
block: nn.Module,
channels: int,
n_blocks: int,
stride: int = 1,
) -> nn.Sequential:
downsample = None
if stride != 1 or self.in_channels != channels * block.expansion:
downsample = self.downsample_block(
in_channels=self.in_channels,
out_channels=channels * block.expansion,
stride=stride,
)
layers = [
block(
self.in_channels, channels, stride, downsample, relu_type=self.relu_type
)
]
self.in_channels = channels * block.expansion
for _ in range(1, n_blocks):
layers.append(block(self.in_channels, channels, relu_type=self.relu_type))
return nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
class ResNetEncoder(nn.Module):
def __init__(self, relu_type: str, weight_file: str = None) -> None:
super(ResNetEncoder, self).__init__()
self.frontend_out = 64
self.backend_out = 512
frontend_relu = (
nn.PReLU(num_parameters=self.frontend_out)
if relu_type == "prelu"
else nn.ReLU()
)
self.frontend3D = nn.Sequential(
nn.Conv3d(
1,
self.frontend_out,
kernel_size=(5, 7, 7),
stride=(1, 2, 2),
padding=(2, 3, 3),
bias=False,
),
nn.BatchNorm3d(self.frontend_out),
frontend_relu,
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
)
self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type)
if weight_file is not None:
model_state_dict = torch.load(weight_file, map_location=torch.device("cpu"))
model_state_dict = model_state_dict["model_state_dict"]
frontend_state_dict, trunk_state_dict = OrderedDict(), OrderedDict()
for key, val in model_state_dict.items():
new_key = ".".join(key.split(".")[1:])
if "frontend3D" in key:
frontend_state_dict[new_key] = val
if "trunk" in key:
trunk_state_dict[new_key] = val
self.frontend3D.load_state_dict(frontend_state_dict)
self.trunk.load_state_dict(trunk_state_dict)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = x.size()
x = self.frontend3D(x)
Tnew = x.shape[2]
x = self.convert_3D_to_2D(x)
x = self.trunk(x)
x = x.view(B, Tnew, x.size(1))
x = x.transpose(1, 2).contiguous()
return x
def convert_3D_to_2D(self, x: torch.Tensor) -> torch.Tensor:
n_batches, n_channels, s_time, sx, sy = x.shape
x = x.transpose(1, 2).contiguous()
return x.reshape(n_batches * s_time, n_channels, sx, sy)