File size: 7,341 Bytes
3e1357a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from typing import Tuple
from transformers import PretrainedConfig


class AVHubertConfig(PretrainedConfig):
    model_type = "av_hubert"

    def __init__(
        self,
        label_rate: int = 25,
        sample_rate: int = 25,
        input_modality: str = "video",
        extractor_mode: str = "default",
        encoder_layers: int = 24,
        encoder_embed_dim: int = 1024,
        encoder_ffn_embed_dim: int = 4096,
        encoder_attention_heads: int = 16,
        activation_fn: str = "gelu",
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        encoder_layerdrop: float = 0.0,
        dropout_input: float = 0.0,
        dropout_features: float = 0.0,
        final_dim: int = 256,
        untie_final_proj: bool = False,
        layer_norm_first: bool = False,
        conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2",
        conv_bias: bool = False,
        logit_temp: float = 0.1,
        target_glu: bool = False,
        feature_grad_mult: float = 1.0,
        mask_length_audio: int = 10,
        mask_prob_audio: float = 0.65,
        mask_length_image: int = 10,
        mask_prob_image: float = 0.65,
        mask_selection: str = "static",
        mask_other: float = 0.0,
        no_mask_overlap: bool = False,
        mask_min_space: int = 1,
        mask_channel_length: int = 64,
        mask_channel_prob: float = 0.5,
        mask_channel_selection: str = "static",
        mask_channel_other: float = 0.0,
        no_mask_channel_overlap: bool = False,
        mask_channel_min_space: int = 1,
        conv_pos: int = 128,
        conv_pos_groups: int = 16,
        latent_temp: Tuple[float, float, float] = (2.0, 0.5, 0.999995),
        skip_masked: bool = False,
        skip_nomask: bool = False,
        resnet_relu_type: str = "prelu",
        resnet_weights: str = None,
        sim_type: str = "cosine",
        sub_encoder_layers: int = 0,
        audio_feat_dim: int = 104,
        modality_dropout: float = 0.0,
        audio_dropout: float = 0.0,
        modality_fuse: str = "concat",
        selection_type: str = "same_other_seq",
        masking_type: str = "input",
        decoder_embed_dim: int = 2560,
        decoder_ffn_embed_dim: int = 3072,
        decoder_layers: int = 6,
        decoder_layerdrop: float = 0.0,
        decoder_attention_heads: int = 4,
        decoder_learned_pos: bool = False,
        decoder_normalize_before: bool = False,
        no_token_positional_embeddings: bool = False,
        decoder_dropout: float = 0.1,
        decoder_attention_dropout: float = 0.1,
        decoder_activation_dropout: float = 0.0,
        max_target_positions: int = 2048,
        share_decoder_input_output_embed: bool = False,
        no_scale_embedding: bool = True,
        num_classes: int = 2004,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.label_rate = label_rate
        self.sample_rate = sample_rate
        self.input_modality = input_modality
        self.extractor_mode = extractor_mode
        self.encoder_layers = encoder_layers
        self.encoder_embed_dim = encoder_embed_dim
        self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.activation_fn = activation_fn
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.encoder_layerdrop = encoder_layerdrop
        self.dropout_input = dropout_input
        self.dropout_features = dropout_features
        self.final_dim = final_dim
        self.untie_final_proj = untie_final_proj
        self.layer_norm_first = layer_norm_first
        self.conv_feature_layers = conv_feature_layers
        self.conv_bias = conv_bias
        self.logit_temp = logit_temp
        self.target_glu = target_glu
        self.feature_grad_mult = feature_grad_mult
        self.mask_length_audio = mask_length_audio
        self.mask_prob_audio = mask_prob_audio
        self.mask_length_image = mask_length_image
        self.mask_prob_image = mask_prob_image
        self.mask_selection = mask_selection
        self.mask_other = mask_other
        self.no_mask_overlap = no_mask_overlap
        self.mask_min_space = mask_min_space
        self.mask_channel_length = mask_channel_length
        self.mask_channel_prob = mask_channel_prob
        self.mask_channel_selection = mask_channel_selection
        self.mask_channel_other = mask_channel_other
        self.no_mask_channel_overlap = no_mask_channel_overlap
        self.mask_channel_min_space = mask_channel_min_space
        self.conv_pos = conv_pos
        self.conv_pos_groups = conv_pos_groups
        self.latent_temp = latent_temp
        self.skip_masked = skip_masked
        self.skip_nomask = skip_nomask
        self.resnet_relu_type = resnet_relu_type
        self.resnet_weights = resnet_weights
        self.sim_type = sim_type
        self.sub_encoder_layers = sub_encoder_layers
        self.audio_feat_dim = audio_feat_dim
        self.modality_dropout = modality_dropout
        self.audio_dropout = audio_dropout
        self.modality_fuse = modality_fuse
        self.selection_type = selection_type
        self.masking_type = masking_type
        self.decoder_embed_dim = decoder_embed_dim
        self.decoder_ffn_embed_dim = decoder_ffn_embed_dim
        self.decoder_layers = decoder_layers
        self.decoder_layerdrop = decoder_layerdrop
        self.decoder_attention_heads = decoder_attention_heads
        self.decoder_learned_pos = decoder_learned_pos
        self.decoder_normalize_before = decoder_normalize_before
        self.no_token_positional_embeddings = no_token_positional_embeddings
        self.decoder_dropout = decoder_dropout
        self.decoder_attention_dropout = decoder_attention_dropout
        self.decoder_activation_dropout = decoder_activation_dropout
        self.max_target_positions = max_target_positions
        self.share_decoder_input_output_embed = share_decoder_input_output_embed
        self.no_scale_embedding = no_scale_embedding
        self.num_classes = num_classes
        self.feature_ds_rate = 1


class AVSPLLMConfig(AVHubertConfig):
    model_type = "avsp_llm"

    def __init__(
        self,
        llm_ckpt_path: str = "vilm/vinallama-2.7b",
        no_pretrained_weights: bool = False,
        final_dropout: float = 0.1,
        apply_mask: bool = False,
        mask_length: int = 10,
        mask_prob: float = 0.5,
        masking_updates: int = 0,
        layerdrop: float = 0.0,
        normalize: bool = False,
        data: str = None,
        w2v_args: dict = None,
        freeze_finetune_updates: int = 0,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.llm_ckpt_path = llm_ckpt_path
        self.no_pretrained_weights = no_pretrained_weights
        self.final_dropout = final_dropout
        self.apply_mask = apply_mask
        self.mask_length = mask_length
        self.mask_prob = mask_prob
        self.masking_updates = masking_updates
        self.layerdrop = layerdrop
        self.normalize = normalize
        self.data = data
        self.w2v_args = w2v_args
        self.freeze_finetune_updates = freeze_finetune_updates