FredZhang7's picture
update model
35cc9f1
|
raw
history blame
1.75 kB
metadata
license: cc-by-4.0
datasets:
  - FredZhang7/toxi-text-3M
pipeline_tag: text-classification
language:
  - ar
  - es
  - pa
  - th
  - et
  - fr
  - fi
  - hu
  - lt
  - ur
  - so
  - pl
  - el
  - mr
  - sk
  - gu
  - he
  - af
  - te
  - ro
  - lv
  - sv
  - ne
  - kn
  - it
  - mk
  - cs
  - en
  - de
  - da
  - ta
  - bn
  - pt
  - sq
  - tl
  - uk
  - bg
  - ca
  - sw
  - hi
  - zh
  - ja
  - hr
  - ru
  - vi
  - id
  - sl
  - cy
  - ko
  - nl
  - ml
  - tr
  - fa
  - 'no'
  - multilingual
tags:
  - nlp
  - moderation

Find the v1 (TensorFlow) model on this page.


v3 v1
Base Model bert-base-multilingual-cased nlpaueb/legal-bert-small-uncased
Base Tokenizer bert-base-multilingual-cased bert-base-multilingual-cased
Framework PyTorch TensorFlow
Dataset Size 3.0M 2.68M
Train Split 80% English
20% English + 100% Multilingual
None
English Train Accuracy 99.5% N/A (≈97.5%)
Other Train Accuracy 98.6% 96.6%
Final Val Accuracy 95.8% 94.6%
Languages 55 N/A (≈35)
Hyperparameters maxlen=208
padding='max_length'
batch_size=112
optimizer=AdamW
learning_rate=1e-5
loss=BCEWithLogitsLoss()
maxlen=192
padding='max_length'
batch_size=16
optimizer=Adam
learning_rate=1e-5
loss="binary_crossentropy"
Training Stopped 7/20/2023 9/05/2022


Models tested for v2: roberta, xlm-roberta, bert-small, bert-base-cased/uncased, bert-multilingual-cased/uncased, and alberta-large-v2. From these models, I chose bert-multilingual-cased because of its higher resource efficiency and performance than the rest for this particular task.