|
import math |
|
import gradio as gr |
|
from PIL import Image, ImageDraw, ImageOps |
|
from modules import processing, shared, images, devices, scripts |
|
from modules.processing import StableDiffusionProcessing |
|
from modules.processing import Processed |
|
from modules.shared import opts, state |
|
from enum import Enum |
|
|
|
class USDUMode(Enum): |
|
LINEAR = 0 |
|
CHESS = 1 |
|
NONE = 2 |
|
|
|
class USDUSFMode(Enum): |
|
NONE = 0 |
|
BAND_PASS = 1 |
|
HALF_TILE = 2 |
|
HALF_TILE_PLUS_INTERSECTIONS = 3 |
|
|
|
class USDUpscaler(): |
|
|
|
def __init__(self, p, image, upscaler_index, save_redraw, save_seams_fix, tile_width, tile_height) -> None: |
|
self.p:StableDiffusionProcessing = p |
|
self.image:Image = image |
|
self.scale_factor = math.ceil(max(p.width, p.height) / max(image.width, image.height)) |
|
|
|
self.upscaler = {"name": "None"} |
|
for i, x in enumerate(shared.sd_upscalers): |
|
if x.name == upscaler_index: |
|
self.upscaler = shared.sd_upscalers[i] |
|
self.redraw = USDURedraw() |
|
self.redraw.save = save_redraw |
|
self.redraw.tile_width = tile_width if tile_width > 0 else tile_height |
|
self.redraw.tile_height = tile_height if tile_height > 0 else tile_width |
|
self.seams_fix = USDUSeamsFix() |
|
self.seams_fix.save = save_seams_fix |
|
self.seams_fix.tile_width = tile_width if tile_width > 0 else tile_height |
|
self.seams_fix.tile_height = tile_height if tile_height > 0 else tile_width |
|
self.initial_info = None |
|
self.rows = math.ceil(self.p.height / self.redraw.tile_height) |
|
self.cols = math.ceil(self.p.width / self.redraw.tile_width) |
|
|
|
def get_factor(self, num): |
|
|
|
if num == 1: |
|
return 2 |
|
if num % 4 == 0: |
|
return 4 |
|
if num % 3 == 0: |
|
return 3 |
|
if num % 2 == 0: |
|
return 2 |
|
return 0 |
|
|
|
def get_factors(self): |
|
scales = [] |
|
current_scale = 1 |
|
current_scale_factor = self.get_factor(self.scale_factor) |
|
while current_scale_factor == 0: |
|
self.scale_factor += 1 |
|
current_scale_factor = self.get_factor(self.scale_factor) |
|
while current_scale < self.scale_factor: |
|
current_scale_factor = self.get_factor(self.scale_factor // current_scale) |
|
scales.append(current_scale_factor) |
|
current_scale = current_scale * current_scale_factor |
|
if current_scale_factor == 0: |
|
break |
|
self.scales = enumerate(scales) |
|
|
|
def upscale(self): |
|
|
|
print(f"Canva size: {self.p.width}x{self.p.height}") |
|
print(f"Image size: {self.image.width}x{self.image.height}") |
|
print(f"Scale factor: {self.scale_factor}") |
|
|
|
if self.upscaler.name == "None": |
|
self.image = self.image.resize((self.p.width, self.p.height), resample=Image.LANCZOS) |
|
return |
|
|
|
self.get_factors() |
|
|
|
for index, value in self.scales: |
|
print(f"Upscaling iteration {index+1} with scale factor {value}") |
|
self.image = self.upscaler.scaler.upscale(self.image, value, self.upscaler.data_path) |
|
|
|
self.image = self.image.resize((self.p.width, self.p.height), resample=Image.LANCZOS) |
|
|
|
def setup_redraw(self, redraw_mode, padding, mask_blur): |
|
self.redraw.mode = USDUMode(redraw_mode) |
|
self.redraw.enabled = self.redraw.mode != USDUMode.NONE |
|
self.redraw.padding = padding |
|
self.p.mask_blur = mask_blur |
|
|
|
def setup_seams_fix(self, padding, denoise, mask_blur, width, mode): |
|
self.seams_fix.padding = padding |
|
self.seams_fix.denoise = denoise |
|
self.seams_fix.mask_blur = mask_blur |
|
self.seams_fix.width = width |
|
self.seams_fix.mode = USDUSFMode(mode) |
|
self.seams_fix.enabled = self.seams_fix.mode != USDUSFMode.NONE |
|
|
|
def save_image(self): |
|
if type(self.p.prompt) != list: |
|
images.save_image(self.image, self.p.outpath_samples, "", self.p.seed, self.p.prompt, opts.samples_format, info=self.initial_info, p=self.p) |
|
else: |
|
images.save_image(self.image, self.p.outpath_samples, "", self.p.seed, self.p.prompt[0], opts.samples_format, info=self.initial_info, p=self.p) |
|
|
|
def calc_jobs_count(self): |
|
redraw_job_count = (self.rows * self.cols) if self.redraw.enabled else 0 |
|
seams_job_count = 0 |
|
if self.seams_fix.mode == USDUSFMode.BAND_PASS: |
|
seams_job_count = self.rows + self.cols - 2 |
|
elif self.seams_fix.mode == USDUSFMode.HALF_TILE: |
|
seams_job_count = self.rows * (self.cols - 1) + (self.rows - 1) * self.cols |
|
elif self.seams_fix.mode == USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS: |
|
seams_job_count = self.rows * (self.cols - 1) + (self.rows - 1) * self.cols + (self.rows - 1) * (self.cols - 1) |
|
|
|
state.job_count = redraw_job_count + seams_job_count |
|
|
|
def print_info(self): |
|
print(f"Tile size: {self.redraw.tile_width}x{self.redraw.tile_height}") |
|
print(f"Tiles amount: {self.rows * self.cols}") |
|
print(f"Grid: {self.rows}x{self.cols}") |
|
print(f"Redraw enabled: {self.redraw.enabled}") |
|
print(f"Seams fix mode: {self.seams_fix.mode.name}") |
|
|
|
def add_extra_info(self): |
|
self.p.extra_generation_params["Ultimate SD upscale upscaler"] = self.upscaler.name |
|
self.p.extra_generation_params["Ultimate SD upscale tile_width"] = self.redraw.tile_width |
|
self.p.extra_generation_params["Ultimate SD upscale tile_height"] = self.redraw.tile_height |
|
self.p.extra_generation_params["Ultimate SD upscale mask_blur"] = self.p.mask_blur |
|
self.p.extra_generation_params["Ultimate SD upscale padding"] = self.redraw.padding |
|
|
|
def process(self): |
|
state.begin() |
|
self.calc_jobs_count() |
|
self.result_images = [] |
|
if self.redraw.enabled: |
|
self.image = self.redraw.start(self.p, self.image, self.rows, self.cols) |
|
self.initial_info = self.redraw.initial_info |
|
self.result_images.append(self.image) |
|
if self.redraw.save: |
|
self.save_image() |
|
|
|
if self.seams_fix.enabled: |
|
self.image = self.seams_fix.start(self.p, self.image, self.rows, self.cols) |
|
self.initial_info = self.seams_fix.initial_info |
|
self.result_images.append(self.image) |
|
if self.seams_fix.save: |
|
self.save_image() |
|
state.end() |
|
|
|
class USDURedraw(): |
|
|
|
def init_draw(self, p, width, height): |
|
p.inpaint_full_res = True |
|
p.inpaint_full_res_padding = self.padding |
|
p.width = math.ceil((self.tile_width+self.padding) / 64) * 64 |
|
p.height = math.ceil((self.tile_height+self.padding) / 64) * 64 |
|
mask = Image.new("L", (width, height), "black") |
|
draw = ImageDraw.Draw(mask) |
|
return mask, draw |
|
|
|
def calc_rectangle(self, xi, yi): |
|
x1 = xi * self.tile_width |
|
y1 = yi * self.tile_height |
|
x2 = xi * self.tile_width + self.tile_width |
|
y2 = yi * self.tile_height + self.tile_height |
|
|
|
return x1, y1, x2, y2 |
|
|
|
def linear_process(self, p, image, rows, cols): |
|
mask, draw = self.init_draw(p, image.width, image.height) |
|
for yi in range(rows): |
|
for xi in range(cols): |
|
if state.interrupted: |
|
break |
|
draw.rectangle(self.calc_rectangle(xi, yi), fill="white") |
|
p.init_images = [image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
draw.rectangle(self.calc_rectangle(xi, yi), fill="black") |
|
if (len(processed.images) > 0): |
|
image = processed.images[0] |
|
|
|
p.width = image.width |
|
p.height = image.height |
|
self.initial_info = processed.infotext(p, 0) |
|
|
|
return image |
|
|
|
def chess_process(self, p, image, rows, cols): |
|
mask, draw = self.init_draw(p, image.width, image.height) |
|
tiles = [] |
|
|
|
for yi in range(rows): |
|
for xi in range(cols): |
|
if state.interrupted: |
|
break |
|
if xi == 0: |
|
tiles.append([]) |
|
color = xi % 2 == 0 |
|
if yi > 0 and yi % 2 != 0: |
|
color = not color |
|
tiles[yi].append(color) |
|
|
|
for yi in range(len(tiles)): |
|
for xi in range(len(tiles[yi])): |
|
if state.interrupted: |
|
break |
|
if not tiles[yi][xi]: |
|
tiles[yi][xi] = not tiles[yi][xi] |
|
continue |
|
tiles[yi][xi] = not tiles[yi][xi] |
|
draw.rectangle(self.calc_rectangle(xi, yi), fill="white") |
|
p.init_images = [image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
draw.rectangle(self.calc_rectangle(xi, yi), fill="black") |
|
if (len(processed.images) > 0): |
|
image = processed.images[0] |
|
|
|
for yi in range(len(tiles)): |
|
for xi in range(len(tiles[yi])): |
|
if state.interrupted: |
|
break |
|
if not tiles[yi][xi]: |
|
continue |
|
draw.rectangle(self.calc_rectangle(xi, yi), fill="white") |
|
p.init_images = [image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
draw.rectangle(self.calc_rectangle(xi, yi), fill="black") |
|
if (len(processed.images) > 0): |
|
image = processed.images[0] |
|
|
|
p.width = image.width |
|
p.height = image.height |
|
self.initial_info = processed.infotext(p, 0) |
|
|
|
return image |
|
|
|
def start(self, p, image, rows, cols): |
|
self.initial_info = None |
|
if self.mode == USDUMode.LINEAR: |
|
return self.linear_process(p, image, rows, cols) |
|
if self.mode == USDUMode.CHESS: |
|
return self.chess_process(p, image, rows, cols) |
|
|
|
class USDUSeamsFix(): |
|
|
|
def init_draw(self, p): |
|
self.initial_info = None |
|
p.width = math.ceil((self.tile_width+self.padding) / 64) * 64 |
|
p.height = math.ceil((self.tile_height+self.padding) / 64) * 64 |
|
|
|
def half_tile_process(self, p, image, rows, cols): |
|
|
|
self.init_draw(p) |
|
processed = None |
|
|
|
gradient = Image.linear_gradient("L") |
|
row_gradient = Image.new("L", (self.tile_width, self.tile_height), "black") |
|
row_gradient.paste(gradient.resize( |
|
(self.tile_width, self.tile_height//2), resample=Image.BICUBIC), (0, 0)) |
|
row_gradient.paste(gradient.rotate(180).resize( |
|
(self.tile_width, self.tile_height//2), resample=Image.BICUBIC), |
|
(0, self.tile_height//2)) |
|
col_gradient = Image.new("L", (self.tile_width, self.tile_height), "black") |
|
col_gradient.paste(gradient.rotate(90).resize( |
|
(self.tile_width//2, self.tile_height), resample=Image.BICUBIC), (0, 0)) |
|
col_gradient.paste(gradient.rotate(270).resize( |
|
(self.tile_width//2, self.tile_height), resample=Image.BICUBIC), (self.tile_width//2, 0)) |
|
|
|
p.denoising_strength = self.denoise |
|
p.mask_blur = self.mask_blur |
|
|
|
for yi in range(rows-1): |
|
for xi in range(cols): |
|
if state.interrupted: |
|
break |
|
p.width = self.tile_width |
|
p.height = self.tile_height |
|
p.inpaint_full_res = True |
|
p.inpaint_full_res_padding = self.padding |
|
mask = Image.new("L", (image.width, image.height), "black") |
|
mask.paste(row_gradient, (xi*self.tile_width, yi*self.tile_height + self.tile_height//2)) |
|
|
|
p.init_images = [image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
if (len(processed.images) > 0): |
|
image = processed.images[0] |
|
|
|
for yi in range(rows): |
|
for xi in range(cols-1): |
|
if state.interrupted: |
|
break |
|
p.width = self.tile_width |
|
p.height = self.tile_height |
|
p.inpaint_full_res = True |
|
p.inpaint_full_res_padding = self.padding |
|
mask = Image.new("L", (image.width, image.height), "black") |
|
mask.paste(col_gradient, (xi*self.tile_width+self.tile_width//2, yi*self.tile_height)) |
|
|
|
p.init_images = [image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
if (len(processed.images) > 0): |
|
image = processed.images[0] |
|
|
|
p.width = image.width |
|
p.height = image.height |
|
if processed is not None: |
|
self.initial_info = processed.infotext(p, 0) |
|
|
|
return image |
|
|
|
def half_tile_process_corners(self, p, image, rows, cols): |
|
fixed_image = self.half_tile_process(p, image, rows, cols) |
|
processed = None |
|
self.init_draw(p) |
|
gradient = Image.radial_gradient("L").resize( |
|
(self.tile_width, self.tile_height), resample=Image.BICUBIC) |
|
gradient = ImageOps.invert(gradient) |
|
p.denoising_strength = self.denoise |
|
|
|
p.mask_blur = self.mask_blur |
|
|
|
for yi in range(rows-1): |
|
for xi in range(cols-1): |
|
if state.interrupted: |
|
break |
|
p.width = self.tile_width |
|
p.height = self.tile_height |
|
p.inpaint_full_res = True |
|
p.inpaint_full_res_padding = 0 |
|
mask = Image.new("L", (fixed_image.width, fixed_image.height), "black") |
|
mask.paste(gradient, (xi*self.tile_width + self.tile_width//2, |
|
yi*self.tile_height + self.tile_height//2)) |
|
|
|
p.init_images = [fixed_image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
if (len(processed.images) > 0): |
|
fixed_image = processed.images[0] |
|
|
|
p.width = fixed_image.width |
|
p.height = fixed_image.height |
|
if processed is not None: |
|
self.initial_info = processed.infotext(p, 0) |
|
|
|
return fixed_image |
|
|
|
def band_pass_process(self, p, image, cols, rows): |
|
|
|
self.init_draw(p) |
|
processed = None |
|
|
|
p.denoising_strength = self.denoise |
|
p.mask_blur = 0 |
|
|
|
gradient = Image.linear_gradient("L") |
|
mirror_gradient = Image.new("L", (256, 256), "black") |
|
mirror_gradient.paste(gradient.resize((256, 128), resample=Image.BICUBIC), (0, 0)) |
|
mirror_gradient.paste(gradient.rotate(180).resize((256, 128), resample=Image.BICUBIC), (0, 128)) |
|
|
|
row_gradient = mirror_gradient.resize((image.width, self.width), resample=Image.BICUBIC) |
|
col_gradient = mirror_gradient.rotate(90).resize((self.width, image.height), resample=Image.BICUBIC) |
|
|
|
for xi in range(1, rows): |
|
if state.interrupted: |
|
break |
|
p.width = self.width + self.padding * 2 |
|
p.height = image.height |
|
p.inpaint_full_res = True |
|
p.inpaint_full_res_padding = self.padding |
|
mask = Image.new("L", (image.width, image.height), "black") |
|
mask.paste(col_gradient, (xi * self.tile_width - self.width // 2, 0)) |
|
|
|
p.init_images = [image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
if (len(processed.images) > 0): |
|
image = processed.images[0] |
|
for yi in range(1, cols): |
|
if state.interrupted: |
|
break |
|
p.width = image.width |
|
p.height = self.width + self.padding * 2 |
|
p.inpaint_full_res = True |
|
p.inpaint_full_res_padding = self.padding |
|
mask = Image.new("L", (image.width, image.height), "black") |
|
mask.paste(row_gradient, (0, yi * self.tile_height - self.width // 2)) |
|
|
|
p.init_images = [image] |
|
p.image_mask = mask |
|
processed = processing.process_images(p) |
|
if (len(processed.images) > 0): |
|
image = processed.images[0] |
|
|
|
p.width = image.width |
|
p.height = image.height |
|
if processed is not None: |
|
self.initial_info = processed.infotext(p, 0) |
|
|
|
return image |
|
|
|
def start(self, p, image, rows, cols): |
|
if USDUSFMode(self.mode) == USDUSFMode.BAND_PASS: |
|
return self.band_pass_process(p, image, rows, cols) |
|
elif USDUSFMode(self.mode) == USDUSFMode.HALF_TILE: |
|
return self.half_tile_process(p, image, rows, cols) |
|
elif USDUSFMode(self.mode) == USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS: |
|
return self.half_tile_process_corners(p, image, rows, cols) |
|
else: |
|
return image |
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "Ultimate SD upscale" |
|
|
|
def show(self, is_img2img): |
|
return is_img2img |
|
|
|
def ui(self, is_img2img): |
|
|
|
target_size_types = [ |
|
"From img2img2 settings", |
|
"Custom size", |
|
"Scale from image size" |
|
] |
|
|
|
seams_fix_types = [ |
|
"None", |
|
"Band pass", |
|
"Half tile offset pass", |
|
"Half tile offset pass + intersections" |
|
] |
|
|
|
redrow_modes = [ |
|
"Linear", |
|
"Chess", |
|
"None" |
|
] |
|
|
|
info = gr.HTML( |
|
"<p style=\"margin-bottom:0.75em\">Will upscale the image depending on the selected target size type</p>") |
|
|
|
with gr.Row(): |
|
target_size_type = gr.Dropdown(label="Target size type", choices=[k for k in target_size_types], type="index", |
|
value=next(iter(target_size_types))) |
|
|
|
custom_width = gr.Slider(label='Custom width', minimum=64, maximum=8192, step=64, value=2048, visible=False, interactive=True) |
|
custom_height = gr.Slider(label='Custom height', minimum=64, maximum=8192, step=64, value=2048, visible=False, interactive=True) |
|
custom_scale = gr.Slider(label='Scale', minimum=1, maximum=16, step=0.01, value=2, visible=False, interactive=True) |
|
|
|
gr.HTML("<p style=\"margin-bottom:0.75em\">Redraw options:</p>") |
|
with gr.Row(): |
|
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], |
|
value=shared.sd_upscalers[0].name, type="value") |
|
with gr.Row(): |
|
redraw_mode = gr.Dropdown(label="Type", choices=[k for k in redrow_modes], type="index", value=next(iter(redrow_modes))) |
|
tile_width = gr.Slider(minimum=0, maximum=2048, step=64, label='Tile width', value=512) |
|
tile_height = gr.Slider(minimum=0, maximum=2048, step=64, label='Tile height', value=0) |
|
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=8) |
|
padding = gr.Slider(label='Padding', minimum=0, maximum=512, step=1, value=32) |
|
gr.HTML("<p style=\"margin-bottom:0.75em\">Seams fix:</p>") |
|
with gr.Row(): |
|
seams_fix_type = gr.Dropdown(label="Type", choices=[k for k in seams_fix_types], type="index", value=next(iter(seams_fix_types))) |
|
seams_fix_denoise = gr.Slider(label='Denoise', minimum=0, maximum=1, step=0.01, value=0.35, visible=False, interactive=True) |
|
seams_fix_width = gr.Slider(label='Width', minimum=0, maximum=128, step=1, value=64, visible=False, interactive=True) |
|
seams_fix_mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, visible=False, interactive=True) |
|
seams_fix_padding = gr.Slider(label='Padding', minimum=0, maximum=128, step=1, value=16, visible=False, interactive=True) |
|
gr.HTML("<p style=\"margin-bottom:0.75em\">Save options:</p>") |
|
with gr.Row(): |
|
save_upscaled_image = gr.Checkbox(label="Upscaled", value=True) |
|
save_seams_fix_image = gr.Checkbox(label="Seams fix", value=False) |
|
|
|
def select_fix_type(fix_index): |
|
all_visible = fix_index != 0 |
|
mask_blur_visible = fix_index == 2 or fix_index == 3 |
|
width_visible = fix_index == 1 |
|
|
|
return [gr.update(visible=all_visible), |
|
gr.update(visible=width_visible), |
|
gr.update(visible=mask_blur_visible), |
|
gr.update(visible=all_visible)] |
|
|
|
seams_fix_type.change( |
|
fn=select_fix_type, |
|
inputs=seams_fix_type, |
|
outputs=[seams_fix_denoise, seams_fix_width, seams_fix_mask_blur, seams_fix_padding] |
|
) |
|
|
|
def select_scale_type(scale_index): |
|
is_custom_size = scale_index == 1 |
|
is_custom_scale = scale_index == 2 |
|
|
|
return [gr.update(visible=is_custom_size), |
|
gr.update(visible=is_custom_size), |
|
gr.update(visible=is_custom_scale), |
|
] |
|
|
|
target_size_type.change( |
|
fn=select_scale_type, |
|
inputs=target_size_type, |
|
outputs=[custom_width, custom_height, custom_scale] |
|
) |
|
|
|
return [info, tile_width, tile_height, mask_blur, padding, seams_fix_width, seams_fix_denoise, seams_fix_padding, |
|
upscaler_index, save_upscaled_image, redraw_mode, save_seams_fix_image, seams_fix_mask_blur, |
|
seams_fix_type, target_size_type, custom_width, custom_height, custom_scale] |
|
|
|
def run(self, p, _, tile_width, tile_height, mask_blur, padding, seams_fix_width, seams_fix_denoise, seams_fix_padding, |
|
upscaler_index, save_upscaled_image, redraw_mode, save_seams_fix_image, seams_fix_mask_blur, |
|
seams_fix_type, target_size_type, custom_width, custom_height, custom_scale): |
|
|
|
|
|
processing.fix_seed(p) |
|
devices.torch_gc() |
|
|
|
p.do_not_save_grid = True |
|
p.do_not_save_samples = True |
|
p.inpaint_full_res = False |
|
|
|
p.inpainting_fill = 1 |
|
p.n_iter = 1 |
|
p.batch_size = 1 |
|
|
|
seed = p.seed |
|
|
|
|
|
init_img = p.init_images[0] |
|
if init_img == None: |
|
return Processed(p, [], seed, "Empty image") |
|
init_img = images.flatten(init_img, opts.img2img_background_color) |
|
|
|
|
|
if target_size_type == 1: |
|
p.width = custom_width |
|
p.height = custom_height |
|
if target_size_type == 2: |
|
p.width = math.ceil((init_img.width * custom_scale) / 64) * 64 |
|
p.height = math.ceil((init_img.height * custom_scale) / 64) * 64 |
|
|
|
|
|
upscaler = USDUpscaler(p, init_img, upscaler_index, save_upscaled_image, save_seams_fix_image, tile_width, tile_height) |
|
upscaler.upscale() |
|
|
|
|
|
upscaler.setup_redraw(redraw_mode, padding, mask_blur) |
|
upscaler.setup_seams_fix(seams_fix_padding, seams_fix_denoise, seams_fix_mask_blur, seams_fix_width, seams_fix_type) |
|
upscaler.print_info() |
|
upscaler.add_extra_info() |
|
upscaler.process() |
|
result_images = upscaler.result_images |
|
|
|
return Processed(p, result_images, seed, upscaler.initial_info if upscaler.initial_info is not None else "") |
|
|
|
|