File size: 23,719 Bytes
c4c6c05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import math
import gradio as gr
from PIL import Image, ImageDraw, ImageOps
from modules import processing, shared, images, devices, scripts
from modules.processing import StableDiffusionProcessing
from modules.processing import Processed
from modules.shared import opts, state
from enum import Enum

class USDUMode(Enum):
    LINEAR = 0
    CHESS = 1
    NONE = 2

class USDUSFMode(Enum):
    NONE = 0
    BAND_PASS = 1
    HALF_TILE = 2
    HALF_TILE_PLUS_INTERSECTIONS = 3

class USDUpscaler():

    def __init__(self, p, image, upscaler_index, save_redraw, save_seams_fix, tile_width, tile_height) -> None:
        self.p:StableDiffusionProcessing = p
        self.image:Image = image
        self.scale_factor = math.ceil(max(p.width, p.height) / max(image.width, image.height))
        #name_indexer = dict((p['name'], i) for i, p in enumerate(shared.sd_upscalers))
        self.upscaler = {"name": "None"}
        for i, x in enumerate(shared.sd_upscalers):
        	if x.name == upscaler_index:
        		self.upscaler = shared.sd_upscalers[i]
        self.redraw = USDURedraw()
        self.redraw.save = save_redraw
        self.redraw.tile_width = tile_width if tile_width > 0 else tile_height
        self.redraw.tile_height = tile_height if tile_height > 0 else tile_width
        self.seams_fix = USDUSeamsFix()
        self.seams_fix.save = save_seams_fix
        self.seams_fix.tile_width = tile_width if tile_width > 0 else tile_height
        self.seams_fix.tile_height = tile_height if tile_height > 0 else tile_width
        self.initial_info = None
        self.rows = math.ceil(self.p.height / self.redraw.tile_height)
        self.cols = math.ceil(self.p.width / self.redraw.tile_width)

    def get_factor(self, num):
        # Its just return, don't need elif
        if num == 1:
            return 2
        if num % 4 == 0:
            return 4
        if num % 3 == 0:
            return 3
        if num % 2 == 0:
            return 2
        return 0

    def get_factors(self):
        scales = []
        current_scale = 1
        current_scale_factor = self.get_factor(self.scale_factor)
        while current_scale_factor == 0:
            self.scale_factor += 1
            current_scale_factor = self.get_factor(self.scale_factor)
        while current_scale < self.scale_factor:
            current_scale_factor = self.get_factor(self.scale_factor // current_scale)
            scales.append(current_scale_factor)
            current_scale = current_scale * current_scale_factor
            if current_scale_factor == 0:
                break
        self.scales = enumerate(scales)

    def upscale(self):
        # Log info
        print(f"Canva size: {self.p.width}x{self.p.height}")
        print(f"Image size: {self.image.width}x{self.image.height}")
        print(f"Scale factor: {self.scale_factor}")
        # Check upscaler is not empty
        if self.upscaler.name == "None":
            self.image = self.image.resize((self.p.width, self.p.height), resample=Image.LANCZOS)
            return
        # Get list with scale factors
        self.get_factors()
        # Upscaling image over all factors
        for index, value in self.scales:
            print(f"Upscaling iteration {index+1} with scale factor {value}")
            self.image = self.upscaler.scaler.upscale(self.image, value, self.upscaler.data_path)
        # Resize image to set values
        self.image = self.image.resize((self.p.width, self.p.height), resample=Image.LANCZOS)

    def setup_redraw(self, redraw_mode, padding, mask_blur):
        self.redraw.mode = USDUMode(redraw_mode)
        self.redraw.enabled = self.redraw.mode != USDUMode.NONE
        self.redraw.padding = padding
        self.p.mask_blur = mask_blur

    def setup_seams_fix(self, padding, denoise, mask_blur, width, mode):
        self.seams_fix.padding = padding
        self.seams_fix.denoise = denoise
        self.seams_fix.mask_blur = mask_blur
        self.seams_fix.width = width
        self.seams_fix.mode = USDUSFMode(mode)
        self.seams_fix.enabled = self.seams_fix.mode != USDUSFMode.NONE

    def save_image(self):
        if type(self.p.prompt) != list:
            images.save_image(self.image, self.p.outpath_samples, "", self.p.seed, self.p.prompt, opts.samples_format, info=self.initial_info, p=self.p)
        else:
            images.save_image(self.image, self.p.outpath_samples, "", self.p.seed, self.p.prompt[0], opts.samples_format, info=self.initial_info, p=self.p)

    def calc_jobs_count(self):
        redraw_job_count = (self.rows * self.cols) if self.redraw.enabled else 0
        seams_job_count = 0
        if self.seams_fix.mode == USDUSFMode.BAND_PASS:
            seams_job_count = self.rows + self.cols - 2
        elif self.seams_fix.mode == USDUSFMode.HALF_TILE:
            seams_job_count = self.rows * (self.cols - 1) + (self.rows - 1) * self.cols
        elif self.seams_fix.mode == USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS:
            seams_job_count = self.rows * (self.cols - 1) + (self.rows - 1) * self.cols + (self.rows - 1) * (self.cols - 1)

        state.job_count = redraw_job_count + seams_job_count

    def print_info(self):
        print(f"Tile size: {self.redraw.tile_width}x{self.redraw.tile_height}")
        print(f"Tiles amount: {self.rows * self.cols}")
        print(f"Grid: {self.rows}x{self.cols}")
        print(f"Redraw enabled: {self.redraw.enabled}")
        print(f"Seams fix mode: {self.seams_fix.mode.name}")

    def add_extra_info(self):
        self.p.extra_generation_params["Ultimate SD upscale upscaler"] = self.upscaler.name
        self.p.extra_generation_params["Ultimate SD upscale tile_width"] = self.redraw.tile_width
        self.p.extra_generation_params["Ultimate SD upscale tile_height"] = self.redraw.tile_height
        self.p.extra_generation_params["Ultimate SD upscale mask_blur"] = self.p.mask_blur
        self.p.extra_generation_params["Ultimate SD upscale padding"] = self.redraw.padding

    def process(self):
        state.begin()
        self.calc_jobs_count()
        self.result_images = []
        if self.redraw.enabled:
            self.image = self.redraw.start(self.p, self.image, self.rows, self.cols)
            self.initial_info = self.redraw.initial_info
        self.result_images.append(self.image)
        if self.redraw.save:
            self.save_image()

        if self.seams_fix.enabled:
            self.image = self.seams_fix.start(self.p, self.image, self.rows, self.cols)
            self.initial_info = self.seams_fix.initial_info
            self.result_images.append(self.image)
            if self.seams_fix.save:
                self.save_image()
        state.end()

class USDURedraw():

    def init_draw(self, p, width, height):
        p.inpaint_full_res = True
        p.inpaint_full_res_padding = self.padding
        p.width = math.ceil((self.tile_width+self.padding) / 64) * 64
        p.height = math.ceil((self.tile_height+self.padding) / 64) * 64
        mask = Image.new("L", (width, height), "black")
        draw = ImageDraw.Draw(mask)
        return mask, draw

    def calc_rectangle(self, xi, yi):
        x1 = xi * self.tile_width
        y1 = yi * self.tile_height
        x2 = xi * self.tile_width + self.tile_width
        y2 = yi * self.tile_height + self.tile_height

        return x1, y1, x2, y2

    def linear_process(self, p, image, rows, cols):
        mask, draw = self.init_draw(p, image.width, image.height)
        for yi in range(rows):
            for xi in range(cols):
                if state.interrupted:
                    break
                draw.rectangle(self.calc_rectangle(xi, yi), fill="white")
                p.init_images = [image]
                p.image_mask = mask
                processed = processing.process_images(p)
                draw.rectangle(self.calc_rectangle(xi, yi), fill="black")
                if (len(processed.images) > 0):
                    image = processed.images[0]

        p.width = image.width
        p.height = image.height
        self.initial_info = processed.infotext(p, 0)

        return image

    def chess_process(self, p, image, rows, cols):
        mask, draw = self.init_draw(p, image.width, image.height)
        tiles = []
        # calc tiles colors
        for yi in range(rows):
            for xi in range(cols):
                if state.interrupted:
                    break
                if xi == 0:
                    tiles.append([])
                color = xi % 2 == 0
                if yi > 0 and yi % 2 != 0:
                    color = not color
                tiles[yi].append(color)

        for yi in range(len(tiles)):
            for xi in range(len(tiles[yi])):
                if state.interrupted:
                    break
                if not tiles[yi][xi]:
                    tiles[yi][xi] = not tiles[yi][xi]
                    continue
                tiles[yi][xi] = not tiles[yi][xi]
                draw.rectangle(self.calc_rectangle(xi, yi), fill="white")
                p.init_images = [image]
                p.image_mask = mask
                processed = processing.process_images(p)
                draw.rectangle(self.calc_rectangle(xi, yi), fill="black")
                if (len(processed.images) > 0):
                    image = processed.images[0]

        for yi in range(len(tiles)):
            for xi in range(len(tiles[yi])):
                if state.interrupted:
                    break
                if not tiles[yi][xi]:
                    continue
                draw.rectangle(self.calc_rectangle(xi, yi), fill="white")
                p.init_images = [image]
                p.image_mask = mask
                processed = processing.process_images(p)
                draw.rectangle(self.calc_rectangle(xi, yi), fill="black")
                if (len(processed.images) > 0):
                    image = processed.images[0]

        p.width = image.width
        p.height = image.height
        self.initial_info = processed.infotext(p, 0)

        return image

    def start(self, p, image, rows, cols):
        self.initial_info = None
        if self.mode == USDUMode.LINEAR:
            return self.linear_process(p, image, rows, cols)
        if self.mode == USDUMode.CHESS:
            return self.chess_process(p, image, rows, cols)

class USDUSeamsFix():

    def init_draw(self, p):
        self.initial_info = None
        p.width = math.ceil((self.tile_width+self.padding) / 64) * 64
        p.height = math.ceil((self.tile_height+self.padding) / 64) * 64

    def half_tile_process(self, p, image, rows, cols):

        self.init_draw(p)
        processed = None

        gradient = Image.linear_gradient("L")
        row_gradient = Image.new("L", (self.tile_width, self.tile_height), "black")
        row_gradient.paste(gradient.resize(
            (self.tile_width, self.tile_height//2), resample=Image.BICUBIC), (0, 0))
        row_gradient.paste(gradient.rotate(180).resize(
                (self.tile_width, self.tile_height//2), resample=Image.BICUBIC),
                (0, self.tile_height//2))
        col_gradient = Image.new("L", (self.tile_width, self.tile_height), "black")
        col_gradient.paste(gradient.rotate(90).resize(
            (self.tile_width//2, self.tile_height), resample=Image.BICUBIC), (0, 0))
        col_gradient.paste(gradient.rotate(270).resize(
            (self.tile_width//2, self.tile_height), resample=Image.BICUBIC), (self.tile_width//2, 0))

        p.denoising_strength = self.denoise
        p.mask_blur = self.mask_blur

        for yi in range(rows-1):
            for xi in range(cols):
                if state.interrupted:
                    break
                p.width = self.tile_width
                p.height = self.tile_height
                p.inpaint_full_res = True
                p.inpaint_full_res_padding = self.padding
                mask = Image.new("L", (image.width, image.height), "black")
                mask.paste(row_gradient, (xi*self.tile_width, yi*self.tile_height + self.tile_height//2))

                p.init_images = [image]
                p.image_mask = mask
                processed = processing.process_images(p)
                if (len(processed.images) > 0):
                    image = processed.images[0]

        for yi in range(rows):
            for xi in range(cols-1):
                if state.interrupted:
                    break
                p.width = self.tile_width
                p.height = self.tile_height
                p.inpaint_full_res = True
                p.inpaint_full_res_padding = self.padding
                mask = Image.new("L", (image.width, image.height), "black")
                mask.paste(col_gradient, (xi*self.tile_width+self.tile_width//2, yi*self.tile_height))

                p.init_images = [image]
                p.image_mask = mask
                processed = processing.process_images(p)
                if (len(processed.images) > 0):
                    image = processed.images[0]

        p.width = image.width
        p.height = image.height
        if processed is not None:
            self.initial_info = processed.infotext(p, 0)

        return image

    def half_tile_process_corners(self, p, image, rows, cols):
        fixed_image = self.half_tile_process(p, image, rows, cols)
        processed = None
        self.init_draw(p)
        gradient = Image.radial_gradient("L").resize(
            (self.tile_width, self.tile_height), resample=Image.BICUBIC)
        gradient = ImageOps.invert(gradient)
        p.denoising_strength = self.denoise
        #p.mask_blur = 0
        p.mask_blur = self.mask_blur

        for yi in range(rows-1):
            for xi in range(cols-1):
                if state.interrupted:
                    break
                p.width = self.tile_width
                p.height = self.tile_height
                p.inpaint_full_res = True
                p.inpaint_full_res_padding = 0
                mask = Image.new("L", (fixed_image.width, fixed_image.height), "black")
                mask.paste(gradient, (xi*self.tile_width + self.tile_width//2,
                                      yi*self.tile_height + self.tile_height//2))

                p.init_images = [fixed_image]
                p.image_mask = mask
                processed = processing.process_images(p)
                if (len(processed.images) > 0):
                    fixed_image = processed.images[0]

        p.width = fixed_image.width
        p.height = fixed_image.height
        if processed is not None:
            self.initial_info = processed.infotext(p, 0)

        return fixed_image

    def band_pass_process(self, p, image, cols, rows):

        self.init_draw(p)
        processed = None

        p.denoising_strength = self.denoise
        p.mask_blur = 0

        gradient = Image.linear_gradient("L")
        mirror_gradient = Image.new("L", (256, 256), "black")
        mirror_gradient.paste(gradient.resize((256, 128), resample=Image.BICUBIC), (0, 0))
        mirror_gradient.paste(gradient.rotate(180).resize((256, 128), resample=Image.BICUBIC), (0, 128))

        row_gradient = mirror_gradient.resize((image.width, self.width), resample=Image.BICUBIC)
        col_gradient = mirror_gradient.rotate(90).resize((self.width, image.height), resample=Image.BICUBIC)

        for xi in range(1, rows):
            if state.interrupted:
                    break
            p.width = self.width + self.padding * 2
            p.height = image.height
            p.inpaint_full_res = True
            p.inpaint_full_res_padding = self.padding
            mask = Image.new("L", (image.width, image.height), "black")
            mask.paste(col_gradient, (xi * self.tile_width - self.width // 2, 0))

            p.init_images = [image]
            p.image_mask = mask
            processed = processing.process_images(p)
            if (len(processed.images) > 0):
                image = processed.images[0]
        for yi in range(1, cols):
            if state.interrupted:
                    break
            p.width = image.width
            p.height = self.width + self.padding * 2
            p.inpaint_full_res = True
            p.inpaint_full_res_padding = self.padding
            mask = Image.new("L", (image.width, image.height), "black")
            mask.paste(row_gradient, (0, yi * self.tile_height - self.width // 2))

            p.init_images = [image]
            p.image_mask = mask
            processed = processing.process_images(p)
            if (len(processed.images) > 0):
                image = processed.images[0]

        p.width = image.width
        p.height = image.height
        if processed is not None:
            self.initial_info = processed.infotext(p, 0)

        return image

    def start(self, p, image, rows, cols):
        if USDUSFMode(self.mode) == USDUSFMode.BAND_PASS:
            return self.band_pass_process(p, image, rows, cols)
        elif USDUSFMode(self.mode) == USDUSFMode.HALF_TILE:
            return self.half_tile_process(p, image, rows, cols)
        elif USDUSFMode(self.mode) == USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS:
            return self.half_tile_process_corners(p, image, rows, cols)
        else:
            return image

class Script(scripts.Script):
    def title(self):
        return "Ultimate SD upscale"

    def show(self, is_img2img):
        return is_img2img

    def ui(self, is_img2img):

        target_size_types = [
            "From img2img2 settings",
            "Custom size",
            "Scale from image size"
        ]

        seams_fix_types = [
            "None",
            "Band pass",
            "Half tile offset pass",
            "Half tile offset pass + intersections"
        ]

        redrow_modes = [
            "Linear",
            "Chess",
            "None"
        ]

        info = gr.HTML(
            "<p style=\"margin-bottom:0.75em\">Will upscale the image depending on the selected target size type</p>")

        with gr.Row():
            target_size_type = gr.Dropdown(label="Target size type", choices=[k for k in target_size_types], type="index",
                                  value=next(iter(target_size_types)))

            custom_width = gr.Slider(label='Custom width', minimum=64, maximum=8192, step=64, value=2048, visible=False, interactive=True)
            custom_height = gr.Slider(label='Custom height', minimum=64, maximum=8192, step=64, value=2048, visible=False, interactive=True)
            custom_scale = gr.Slider(label='Scale', minimum=1, maximum=16, step=0.01, value=2, visible=False, interactive=True)

        gr.HTML("<p style=\"margin-bottom:0.75em\">Redraw options:</p>")
        with gr.Row():
            upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers],
                                value=shared.sd_upscalers[0].name, type="value")
        with gr.Row():
            redraw_mode = gr.Dropdown(label="Type", choices=[k for k in redrow_modes], type="index", value=next(iter(redrow_modes)))
            tile_width = gr.Slider(minimum=0, maximum=2048, step=64, label='Tile width', value=512)
            tile_height = gr.Slider(minimum=0, maximum=2048, step=64, label='Tile height', value=0)
            mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=8)
            padding = gr.Slider(label='Padding', minimum=0, maximum=512, step=1, value=32)
        gr.HTML("<p style=\"margin-bottom:0.75em\">Seams fix:</p>")
        with gr.Row():
            seams_fix_type = gr.Dropdown(label="Type", choices=[k for k in seams_fix_types], type="index", value=next(iter(seams_fix_types)))
            seams_fix_denoise = gr.Slider(label='Denoise', minimum=0, maximum=1, step=0.01, value=0.35, visible=False, interactive=True)
            seams_fix_width = gr.Slider(label='Width', minimum=0, maximum=128, step=1, value=64, visible=False, interactive=True)
            seams_fix_mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, visible=False, interactive=True)
            seams_fix_padding = gr.Slider(label='Padding', minimum=0, maximum=128, step=1, value=16, visible=False, interactive=True)
        gr.HTML("<p style=\"margin-bottom:0.75em\">Save options:</p>")
        with gr.Row():
            save_upscaled_image = gr.Checkbox(label="Upscaled", value=True)
            save_seams_fix_image = gr.Checkbox(label="Seams fix", value=False)

        def select_fix_type(fix_index):
            all_visible = fix_index != 0
            mask_blur_visible = fix_index == 2 or fix_index == 3
            width_visible = fix_index == 1

            return [gr.update(visible=all_visible),
                    gr.update(visible=width_visible),
                    gr.update(visible=mask_blur_visible),
                    gr.update(visible=all_visible)]

        seams_fix_type.change(
            fn=select_fix_type,
            inputs=seams_fix_type,
            outputs=[seams_fix_denoise, seams_fix_width, seams_fix_mask_blur, seams_fix_padding]
        )

        def select_scale_type(scale_index):
            is_custom_size = scale_index == 1
            is_custom_scale = scale_index == 2

            return [gr.update(visible=is_custom_size),
                    gr.update(visible=is_custom_size),
                    gr.update(visible=is_custom_scale),
                    ]

        target_size_type.change(
            fn=select_scale_type,
            inputs=target_size_type,
            outputs=[custom_width, custom_height, custom_scale]
        )

        return [info, tile_width, tile_height, mask_blur, padding, seams_fix_width, seams_fix_denoise, seams_fix_padding,
                upscaler_index, save_upscaled_image, redraw_mode, save_seams_fix_image, seams_fix_mask_blur,
                seams_fix_type, target_size_type, custom_width, custom_height, custom_scale]

    def run(self, p, _, tile_width, tile_height, mask_blur, padding, seams_fix_width, seams_fix_denoise, seams_fix_padding,
            upscaler_index, save_upscaled_image, redraw_mode, save_seams_fix_image, seams_fix_mask_blur,
            seams_fix_type, target_size_type, custom_width, custom_height, custom_scale):

        # Init
        processing.fix_seed(p)
        devices.torch_gc()

        p.do_not_save_grid = True
        p.do_not_save_samples = True
        p.inpaint_full_res = False

        p.inpainting_fill = 1
        p.n_iter = 1
        p.batch_size = 1

        seed = p.seed

        # Init image
        init_img = p.init_images[0]
        if init_img == None:
            return Processed(p, [], seed, "Empty image")
        init_img = images.flatten(init_img, opts.img2img_background_color)

        #override size
        if target_size_type == 1:
            p.width = custom_width
            p.height = custom_height
        if target_size_type == 2:
            p.width = math.ceil((init_img.width * custom_scale) / 64) * 64
            p.height = math.ceil((init_img.height * custom_scale) / 64) * 64

        # Upscaling
        upscaler = USDUpscaler(p, init_img, upscaler_index, save_upscaled_image, save_seams_fix_image, tile_width, tile_height)
        upscaler.upscale()
        
        # Drawing
        upscaler.setup_redraw(redraw_mode, padding, mask_blur)
        upscaler.setup_seams_fix(seams_fix_padding, seams_fix_denoise, seams_fix_mask_blur, seams_fix_width, seams_fix_type)
        upscaler.print_info()
        upscaler.add_extra_info()
        upscaler.process()
        result_images = upscaler.result_images

        return Processed(p, result_images, seed, upscaler.initial_info if upscaler.initial_info is not None else "")