LoRA_Nastya_Renz / loadimageb64.py
FluttyProger's picture
Upload 3 files
a17c757
raw
history blame
2.37 kB
from PIL import Image
import io
import base64
import numpy as np
import torch
class imagetob64():
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required": {"images": ("IMAGE", ), },}
CATEGORY = "image"
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "images_tob64"
def images_tob64(self, images):
imges = []
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
buffer = io.BytesIO()
img.save(buffer, format="JPEG")
buffer.seek(0)
imgb64 = base64.b64encode(buffer.getvalue()).decode()
imges.append(imgb64)
return { "ui": { "images": imges } }
class loadimageb64:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
"""
Return a dictionary which contains config for all input fields.
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
The type can be a list for selection.
Returns: `dict`:
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
- Value input_fields (`dict`): Contains input fields config:
* Key field_name (`string`): Name of a entry-point method's argument
* Value field_config (`tuple`):
+ First value is a string indicate the type of field or a list for selection.
+ Secound value is a config for type "INT", "STRING" or "FLOAT".
"""
return {"required": {"b64img": ("STRING", {"multiline": False}),}}
CATEGORY = "image"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load_imageb64"
def load_imageb64(self, b64img):
pilim = Image.open(io.BytesIO(base64.b64decode(b64img)))
tensor_bw = pilim.convert("RGB")
tensor_bw = np.array(tensor_bw).astype(np.float32) / 255.0
tensor_bw = torch.from_numpy(tensor_bw)[None,]
return (tensor_bw,)
NODE_CLASS_MAPPINGS = {
"loadimageb64": loadimageb64,
"imagetob64": imagetob64,
}