FluttyProger commited on
Commit
a17c757
·
1 Parent(s): 63ea1aa

Upload 3 files

Browse files
Files changed (3) hide show
  1. loadimageb64.py +70 -0
  2. maskgen.py +63 -0
  3. maskload.py +39 -0
loadimageb64.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import io
3
+ import base64
4
+ import numpy as np
5
+ import torch
6
+
7
+ class imagetob64():
8
+ def __init__(self):
9
+ pass
10
+
11
+ @classmethod
12
+ def INPUT_TYPES(s):
13
+ return {"required": {"images": ("IMAGE", ), },}
14
+
15
+ CATEGORY = "image"
16
+ RETURN_TYPES = ()
17
+ OUTPUT_NODE = True
18
+ FUNCTION = "images_tob64"
19
+ def images_tob64(self, images):
20
+ imges = []
21
+ for image in images:
22
+ i = 255. * image.cpu().numpy()
23
+ img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
24
+ buffer = io.BytesIO()
25
+ img.save(buffer, format="JPEG")
26
+ buffer.seek(0)
27
+ imgb64 = base64.b64encode(buffer.getvalue()).decode()
28
+ imges.append(imgb64)
29
+ return { "ui": { "images": imges } }
30
+
31
+ class loadimageb64:
32
+
33
+ def __init__(self):
34
+ pass
35
+
36
+ @classmethod
37
+ def INPUT_TYPES(s):
38
+ """
39
+ Return a dictionary which contains config for all input fields.
40
+ Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
41
+ Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
42
+ The type can be a list for selection.
43
+
44
+ Returns: `dict`:
45
+ - Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
46
+ - Value input_fields (`dict`): Contains input fields config:
47
+ * Key field_name (`string`): Name of a entry-point method's argument
48
+ * Value field_config (`tuple`):
49
+ + First value is a string indicate the type of field or a list for selection.
50
+ + Secound value is a config for type "INT", "STRING" or "FLOAT".
51
+ """
52
+ return {"required": {"b64img": ("STRING", {"multiline": False}),}}
53
+
54
+ CATEGORY = "image"
55
+ RETURN_TYPES = ("IMAGE",)
56
+
57
+ FUNCTION = "load_imageb64"
58
+ def load_imageb64(self, b64img):
59
+ pilim = Image.open(io.BytesIO(base64.b64decode(b64img)))
60
+ tensor_bw = pilim.convert("RGB")
61
+ tensor_bw = np.array(tensor_bw).astype(np.float32) / 255.0
62
+ tensor_bw = torch.from_numpy(tensor_bw)[None,]
63
+
64
+ return (tensor_bw,)
65
+
66
+
67
+ NODE_CLASS_MAPPINGS = {
68
+ "loadimageb64": loadimageb64,
69
+ "imagetob64": imagetob64,
70
+ }
maskgen.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import albumentations as albu
2
+ import numpy as np
3
+ from iglovikov_helper_functions.utils.image_utils import pad, unpad
4
+ from iglovikov_helper_functions.dl.pytorch.utils import tensor_from_rgb_image
5
+ import cv2
6
+ import torch
7
+ from PIL import Image
8
+
9
+ def pil2tensor(image):
10
+ return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
11
+
12
+ def tensor2np(image):
13
+ return np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
14
+
15
+ class GenImageMask:
16
+
17
+ def __init__(self):
18
+ pass
19
+
20
+ @classmethod
21
+ def INPUT_TYPES(s):
22
+ """
23
+ Return a dictionary which contains config for all input fields.
24
+ Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
25
+ Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
26
+ The type can be a list for selection.
27
+
28
+ Returns: `dict`:
29
+ - Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
30
+ - Value input_fields (`dict`): Contains input fields config:
31
+ * Key field_name (`string`): Name of a entry-point method's argument
32
+ * Value field_config (`tuple`):
33
+ + First value is a string indicate the type of field or a list for selection.
34
+ + Secound value is a config for type "INT", "STRING" or "FLOAT".
35
+ """
36
+ return {"required": {"image": ("IMAGE",), "segm_model": ("SEGM_MODEL",)}}
37
+
38
+ CATEGORY = "image"
39
+ RETURN_TYPES = ("IMAGE",)
40
+ RETURN_NAMES = ("BW Mask",)
41
+
42
+ FUNCTION = "mask_image"
43
+ def mask_image(self, image, segm_model):
44
+
45
+ transform = albu.Compose([albu.Normalize(p=1)], p=1)
46
+ image = tensor2np(image)
47
+ padded_image, pads = pad(image, factor=32, border=cv2.BORDER_CONSTANT)
48
+ x = transform(image=padded_image)["image"]
49
+ x = torch.unsqueeze(tensor_from_rgb_image(x), 0)
50
+ with torch.no_grad():
51
+ prediction = segm_model(x)[0][0]
52
+
53
+ mask = (prediction > 0.01).cpu().numpy().astype(np.uint8)
54
+
55
+ mask = unpad(mask, pads)
56
+
57
+ imag = pil2tensor(Image.fromarray(cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) * 255))
58
+ return (imag,)
59
+
60
+
61
+ NODE_CLASS_MAPPINGS = {
62
+ "GenImageMask": GenImageMask,
63
+ }
maskload.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from cloths_segmentation.pre_trained_models import create_model
2
+
3
+ class GenMaskModela:
4
+
5
+ def __init__(self):
6
+ pass
7
+
8
+ @classmethod
9
+ def INPUT_TYPES(s):
10
+ """
11
+ Return a dictionary which contains config for all input fields.
12
+ Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
13
+ Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
14
+ The type can be a list for selection.
15
+
16
+ Returns: `dict`:
17
+ - Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
18
+ - Value input_fields (`dict`): Contains input fields config:
19
+ * Key field_name (`string`): Name of a entry-point method's argument
20
+ * Value field_config (`tuple`):
21
+ + First value is a string indicate the type of field or a list for selection.
22
+ + Secound value is a config for type "INT", "STRING" or "FLOAT".
23
+ """
24
+ return {"required": {}}
25
+
26
+ CATEGORY = "image"
27
+ RETURN_TYPES = ("SEGM_MODEL",)
28
+
29
+ FUNCTION = "masks_image"
30
+ def masks_image(self):
31
+ modela = create_model("Unet_2020-10-30")
32
+ modela.eval()
33
+
34
+ return (modela,)
35
+
36
+
37
+ NODE_CLASS_MAPPINGS = {
38
+ "GenMaskModela": GenMaskModela,
39
+ }