Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Fischerboot/LLama3-Lexi-Aura-3Some-SLERP-SLERP-ql-merge
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

chat_template: llama3
datasets:
  - path: Fischerboot/improved
    type: sharegpt
  - path: PJMixers/grimulkan_theory-of-mind-ShareGPT
    type: sharegpt
  - path: PJMixers/example-sharegpt-no-system
    type: sharegpt
  - path: PJMixers/unalignment_toxic-dpo-v0.2-ShareGPT
    type: sharegpt
    conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/newandimprvoed-2ep

adapter: qlora
lora_model_dir:

sequence_len: 128
sample_packing: false
pad_to_sequence_len: true

lora_r: 8
lora_alpha: 4
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 8.0
loss_watchdog_patience: 3

eval_sample_packing: false
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|begin_of_text|>"
  eos_token: "<|end_of_text|>"
  pad_token: "<|end_of_text|>"

outputs/newandimprvoed-2ep

This model is a fine-tuned version of Fischerboot/LLama3-Lexi-Aura-3Some-SLERP-SLERP-ql-merge on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
7.8707 0.0043 1 5.6886
2.1474 0.2532 59 1.7117
0.9854 0.5064 118 1.5572
0.6194 0.7597 177 1.5015
0.5371 1.0129 236 1.4206
0.9501 1.2661 295 1.4110
0.6091 1.5193 354 1.4059
0.7667 1.7725 413 1.3831

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Fischerboot/sophie-impvoed-v2-2epochs