|
import os |
|
import time |
|
from typing import Any, Mapping, Text, Tuple, Union, NamedTuple |
|
from functools import partial |
|
import re |
|
import dataclasses |
|
import random |
|
|
|
from ml_collections.config_dict import config_dict |
|
from ml_collections import ConfigDict |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from absl import logging |
|
import optax |
|
|
|
from EasyLM.jax_utils import float_to_dtype |
|
|
|
|
|
class OptimizerFactory(object): |
|
""" Configurable optax optimizer factory. """ |
|
|
|
def __init__(self): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def get_default_config(updates=None): |
|
config = ConfigDict() |
|
config.accumulate_gradient_steps = 1 |
|
config.type = 'adamw' |
|
config.palm_optimizer = PalmOptimizerFactory.get_default_config() |
|
config.adamw_optimizer = AdamWOptimizerFactory.get_default_config() |
|
config.lion_optimizer = LionOptimizerFactory.get_default_config() |
|
|
|
if updates is not None: |
|
config.update(ConfigDict(updates).copy_and_resolve_references()) |
|
return config |
|
|
|
@classmethod |
|
def get_optimizer(cls, config, weight_decay_mask=None): |
|
config = cls.get_default_config(config) |
|
if config.type == 'palm': |
|
optimizer, optimizer_info = PalmOptimizerFactory.get_optimizer( |
|
config.palm_optimizer, weight_decay_mask |
|
) |
|
elif config.type == 'adamw': |
|
optimizer, optimizer_info = AdamWOptimizerFactory.get_optimizer( |
|
config.adamw_optimizer, weight_decay_mask |
|
) |
|
elif config.type == 'lion': |
|
optimizer, optimizer_info = LionOptimizerFactory.get_optimizer( |
|
config.lion_optimizer, weight_decay_mask |
|
) |
|
else: |
|
raise ValueError(f'Unknown optimizer type: {config.type}') |
|
|
|
if config.accumulate_gradient_steps > 1: |
|
optimizer = optax.MultiSteps( |
|
optimizer, config.accumulate_gradient_steps |
|
) |
|
|
|
return optimizer, optimizer_info |
|
|
|
|
|
class PalmOptimizerFactory(object): |
|
""" PaLM optimizer factory. This optimizer implements the optimizer |
|
described in the PaLM paper: https://arxiv.org/abs/2204.02311 |
|
""" |
|
|
|
def __init__(self): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def get_default_config(updates=None): |
|
config = ConfigDict() |
|
config.lr = 0.01 |
|
config.lr_warmup_steps = 10000 |
|
config.b1 = 0.9 |
|
config.b2 = 0.99 |
|
config.clip_gradient = 1.0 |
|
config.weight_decay = 1e-4 |
|
config.bf16_momentum = False |
|
|
|
if updates is not None: |
|
config.update(ConfigDict(updates).copy_and_resolve_references()) |
|
return config |
|
|
|
@classmethod |
|
def get_optimizer(cls, config, weight_decay_mask=None): |
|
config = cls.get_default_config(config) |
|
|
|
def learning_rate_schedule(step): |
|
multiplier = config.lr / 0.01 |
|
return multiplier / jnp.sqrt(jnp.maximum(step, config.lr_warmup_steps)) |
|
|
|
def weight_decay_schedule(step): |
|
multiplier = config.weight_decay / 1e-4 |
|
return -multiplier * jnp.square(learning_rate_schedule(step)) |
|
|
|
optimizer_info = dict( |
|
learning_rate_schedule=learning_rate_schedule, |
|
weight_decay_schedule=weight_decay_schedule, |
|
) |
|
|
|
optimizer = optax.chain( |
|
optax.clip_by_global_norm(config.clip_gradient), |
|
optax.adafactor( |
|
learning_rate=learning_rate_schedule, |
|
multiply_by_parameter_scale=True, |
|
momentum=config.b1, |
|
decay_rate=config.b2, |
|
factored=False, |
|
clipping_threshold=None, |
|
dtype_momentum=jnp.bfloat16 if config.bf16_momentum else jnp.float32, |
|
), |
|
optax_add_scheduled_weight_decay( |
|
weight_decay_schedule, weight_decay_mask |
|
) |
|
) |
|
return optimizer, optimizer_info |
|
|
|
|
|
class AdamWOptimizerFactory(object): |
|
""" AdamW optimizer with cosine schedule. """ |
|
|
|
def __init__(self): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def get_default_config(updates=None): |
|
config = ConfigDict() |
|
config.init_lr = 0.0 |
|
config.end_lr = 0.001 |
|
config.lr = 0.01 |
|
config.lr_warmup_steps = 2000 |
|
config.lr_decay_steps = 500000 |
|
config.b1 = 0.9 |
|
config.b2 = 0.95 |
|
config.clip_gradient = 1.0 |
|
config.weight_decay = 1e-4 |
|
config.bf16_momentum = False |
|
config.multiply_by_parameter_scale = False |
|
|
|
if updates is not None: |
|
config.update(ConfigDict(updates).copy_and_resolve_references()) |
|
return config |
|
|
|
@classmethod |
|
def get_optimizer(cls, config, weight_decay_mask=None): |
|
config = cls.get_default_config(config) |
|
|
|
learning_rate_schedule = optax.warmup_cosine_decay_schedule( |
|
init_value=config.init_lr, |
|
peak_value=config.lr, |
|
warmup_steps=config.lr_warmup_steps, |
|
decay_steps=config.lr_decay_steps, |
|
end_value=config.end_lr, |
|
) |
|
|
|
optimizer_info = dict( |
|
learning_rate_schedule=learning_rate_schedule, |
|
) |
|
|
|
if config.multiply_by_parameter_scale: |
|
optimizer = optax.chain( |
|
optax.clip_by_global_norm(config.clip_gradient), |
|
optax.adafactor( |
|
learning_rate=learning_rate_schedule, |
|
multiply_by_parameter_scale=True, |
|
momentum=config.b1, |
|
decay_rate=config.b2, |
|
factored=False, |
|
clipping_threshold=None, |
|
dtype_momentum=jnp.bfloat16 if config.bf16_momentum else jnp.float32, |
|
), |
|
optax_add_scheduled_weight_decay( |
|
lambda step: -learning_rate_schedule(step) * config.weight_decay, |
|
weight_decay_mask |
|
) |
|
) |
|
else: |
|
optimizer = optax.chain( |
|
optax.clip_by_global_norm(config.clip_gradient), |
|
optax.adamw( |
|
learning_rate=learning_rate_schedule, |
|
weight_decay=config.weight_decay, |
|
b1=config.b1, |
|
b2=config.b2, |
|
mask=weight_decay_mask, |
|
mu_dtype=jnp.bfloat16 if config.bf16_momentum else jnp.float32, |
|
), |
|
) |
|
|
|
return optimizer, optimizer_info |
|
|
|
|
|
class LionOptimizerFactory(object): |
|
""" Lion optimizer with cosine schedule. """ |
|
|
|
def __init__(self): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def get_default_config(updates=None): |
|
config = ConfigDict() |
|
config.init_lr = 0.0 |
|
config.end_lr = 0.0001 |
|
config.lr = 0.001 |
|
config.lr_warmup_steps = 2000 |
|
config.lr_decay_steps = 500000 |
|
config.b1 = 0.9 |
|
config.b2 = 0.98 |
|
config.clip_gradient = 1.0 |
|
config.weight_decay = 1e-3 |
|
config.bf16_momentum = False |
|
|
|
if updates is not None: |
|
config.update(ConfigDict(updates).copy_and_resolve_references()) |
|
return config |
|
|
|
@classmethod |
|
def get_optimizer(cls, config, weight_decay_mask=None): |
|
config = cls.get_default_config(config) |
|
|
|
learning_rate_schedule = optax.warmup_cosine_decay_schedule( |
|
init_value=config.init_lr, |
|
peak_value=config.lr, |
|
warmup_steps=config.lr_warmup_steps, |
|
decay_steps=config.lr_decay_steps, |
|
end_value=config.end_lr, |
|
) |
|
|
|
optimizer_info = dict( |
|
learning_rate_schedule=learning_rate_schedule, |
|
) |
|
|
|
optimizer = optax.chain( |
|
optax.clip_by_global_norm(config.clip_gradient), |
|
optax.lion( |
|
learning_rate=learning_rate_schedule, |
|
weight_decay=config.weight_decay, |
|
b1=config.b1, |
|
b2=config.b2, |
|
mask=weight_decay_mask, |
|
mu_dtype=jnp.bfloat16 if config.bf16_momentum else jnp.float32, |
|
), |
|
) |
|
|
|
return optimizer, optimizer_info |
|
|
|
|
|
class OptaxScheduledWeightDecayState(NamedTuple): |
|
count: jnp.DeviceArray |
|
|
|
|
|
def optax_add_scheduled_weight_decay(schedule_fn, mask=None): |
|
""" Apply weight decay with schedule. """ |
|
|
|
def init_fn(params): |
|
del params |
|
return OptaxScheduledWeightDecayState(count=jnp.zeros([], jnp.int32)) |
|
|
|
def update_fn(updates, state, params): |
|
if params is None: |
|
raise ValueError('Params cannot be None for weight decay!') |
|
|
|
weight_decay = schedule_fn(state.count) |
|
updates = jax.tree_util.tree_map( |
|
lambda g, p: g + weight_decay * p, updates, params |
|
) |
|
return updates, OptaxScheduledWeightDecayState( |
|
count=optax.safe_int32_increment(state.count) |
|
) |
|
|
|
if mask is not None: |
|
return optax.masked(optax.GradientTransformation(init_fn, update_fn), mask) |
|
return optax.GradientTransformation(init_fn, update_fn) |
|
|