Text Generation
Transformers
PyTorch
Safetensors
Finnish
llama
finnish
text-generation-inference
File size: 9,112 Bytes
a971b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import time
from typing import Any, Mapping, Text, Tuple, Union, NamedTuple
from functools import partial
import re
import dataclasses
import random

from ml_collections.config_dict import config_dict
from ml_collections import ConfigDict
import jax
import jax.numpy as jnp
import numpy as np
from absl import logging
import optax

from EasyLM.jax_utils import float_to_dtype


class OptimizerFactory(object):
    """ Configurable optax optimizer factory. """

    def __init__(self):
        raise NotImplementedError

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.accumulate_gradient_steps = 1
        config.type = 'adamw'
        config.palm_optimizer = PalmOptimizerFactory.get_default_config()
        config.adamw_optimizer = AdamWOptimizerFactory.get_default_config()
        config.lion_optimizer = LionOptimizerFactory.get_default_config()

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    @classmethod
    def get_optimizer(cls, config, weight_decay_mask=None):
        config = cls.get_default_config(config)
        if config.type == 'palm':
            optimizer, optimizer_info = PalmOptimizerFactory.get_optimizer(
                config.palm_optimizer, weight_decay_mask
            )
        elif config.type == 'adamw':
            optimizer, optimizer_info = AdamWOptimizerFactory.get_optimizer(
                config.adamw_optimizer, weight_decay_mask
            )
        elif config.type == 'lion':
            optimizer, optimizer_info = LionOptimizerFactory.get_optimizer(
                config.lion_optimizer, weight_decay_mask
            )
        else:
            raise ValueError(f'Unknown optimizer type: {config.type}')

        if config.accumulate_gradient_steps > 1:
            optimizer = optax.MultiSteps(
                optimizer, config.accumulate_gradient_steps
            )

        return optimizer, optimizer_info


class PalmOptimizerFactory(object):
    """ PaLM optimizer factory. This optimizer implements the optimizer
        described in the PaLM paper: https://arxiv.org/abs/2204.02311
    """

    def __init__(self):
        raise NotImplementedError

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.lr = 0.01
        config.lr_warmup_steps = 10000
        config.b1 = 0.9
        config.b2 = 0.99
        config.clip_gradient = 1.0
        config.weight_decay = 1e-4
        config.bf16_momentum = False

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    @classmethod
    def get_optimizer(cls, config, weight_decay_mask=None):
        config = cls.get_default_config(config)

        def learning_rate_schedule(step):
            multiplier = config.lr / 0.01
            return multiplier / jnp.sqrt(jnp.maximum(step, config.lr_warmup_steps))

        def weight_decay_schedule(step):
            multiplier = config.weight_decay / 1e-4
            return -multiplier * jnp.square(learning_rate_schedule(step))

        optimizer_info = dict(
            learning_rate_schedule=learning_rate_schedule,
            weight_decay_schedule=weight_decay_schedule,
        )

        optimizer = optax.chain(
            optax.clip_by_global_norm(config.clip_gradient),
            optax.adafactor(
                learning_rate=learning_rate_schedule,
                multiply_by_parameter_scale=True,
                momentum=config.b1,
                decay_rate=config.b2,
                factored=False,
                clipping_threshold=None,
                dtype_momentum=jnp.bfloat16 if config.bf16_momentum else jnp.float32,
            ),
            optax_add_scheduled_weight_decay(
                weight_decay_schedule, weight_decay_mask
            )
        )
        return optimizer, optimizer_info


class AdamWOptimizerFactory(object):
    """ AdamW optimizer with cosine schedule. """

    def __init__(self):
        raise NotImplementedError

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.init_lr = 0.0
        config.end_lr = 0.001
        config.lr = 0.01
        config.lr_warmup_steps = 2000
        config.lr_decay_steps = 500000
        config.b1 = 0.9
        config.b2 = 0.95
        config.clip_gradient = 1.0
        config.weight_decay = 1e-4
        config.bf16_momentum = False
        config.multiply_by_parameter_scale = False

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    @classmethod
    def get_optimizer(cls, config, weight_decay_mask=None):
        config = cls.get_default_config(config)

        learning_rate_schedule = optax.warmup_cosine_decay_schedule(
            init_value=config.init_lr,
            peak_value=config.lr,
            warmup_steps=config.lr_warmup_steps,
            decay_steps=config.lr_decay_steps,
            end_value=config.end_lr,
        )

        optimizer_info = dict(
            learning_rate_schedule=learning_rate_schedule,
        )

        if config.multiply_by_parameter_scale:
            optimizer = optax.chain(
                optax.clip_by_global_norm(config.clip_gradient),
                optax.adafactor(
                    learning_rate=learning_rate_schedule,
                    multiply_by_parameter_scale=True,
                    momentum=config.b1,
                    decay_rate=config.b2,
                    factored=False,
                    clipping_threshold=None,
                    dtype_momentum=jnp.bfloat16 if config.bf16_momentum else jnp.float32,
                ),
                optax_add_scheduled_weight_decay(
                    lambda step: -learning_rate_schedule(step) * config.weight_decay,
                    weight_decay_mask
                )
            )
        else:
            optimizer = optax.chain(
                optax.clip_by_global_norm(config.clip_gradient),
                optax.adamw(
                    learning_rate=learning_rate_schedule,
                    weight_decay=config.weight_decay,
                    b1=config.b1,
                    b2=config.b2,
                    mask=weight_decay_mask,
                    mu_dtype=jnp.bfloat16 if config.bf16_momentum else jnp.float32,
                ),
            )

        return optimizer, optimizer_info


class LionOptimizerFactory(object):
    """ Lion optimizer with cosine schedule. """

    def __init__(self):
        raise NotImplementedError

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.init_lr = 0.0
        config.end_lr = 0.0001
        config.lr = 0.001
        config.lr_warmup_steps = 2000
        config.lr_decay_steps = 500000
        config.b1 = 0.9
        config.b2 = 0.98
        config.clip_gradient = 1.0
        config.weight_decay = 1e-3
        config.bf16_momentum = False

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    @classmethod
    def get_optimizer(cls, config, weight_decay_mask=None):
        config = cls.get_default_config(config)

        learning_rate_schedule = optax.warmup_cosine_decay_schedule(
            init_value=config.init_lr,
            peak_value=config.lr,
            warmup_steps=config.lr_warmup_steps,
            decay_steps=config.lr_decay_steps,
            end_value=config.end_lr,
        )

        optimizer_info = dict(
            learning_rate_schedule=learning_rate_schedule,
        )

        optimizer = optax.chain(
            optax.clip_by_global_norm(config.clip_gradient),
            optax.lion(
                learning_rate=learning_rate_schedule,
                weight_decay=config.weight_decay,
                b1=config.b1,
                b2=config.b2,
                mask=weight_decay_mask,
                mu_dtype=jnp.bfloat16 if config.bf16_momentum else jnp.float32,
            ),
        )

        return optimizer, optimizer_info


class OptaxScheduledWeightDecayState(NamedTuple):
    count: jnp.DeviceArray


def optax_add_scheduled_weight_decay(schedule_fn, mask=None):
    """ Apply weight decay with schedule. """

    def init_fn(params):
        del params
        return OptaxScheduledWeightDecayState(count=jnp.zeros([], jnp.int32))

    def update_fn(updates, state, params):
        if params is None:
            raise ValueError('Params cannot be None for weight decay!')

        weight_decay = schedule_fn(state.count)
        updates = jax.tree_util.tree_map(
            lambda g, p: g + weight_decay * p, updates, params
        )
        return updates, OptaxScheduledWeightDecayState(
            count=optax.safe_int32_increment(state.count)
        )

    if mask is not None:
        return optax.masked(optax.GradientTransformation(init_fn, update_fn), mask)
    return optax.GradientTransformation(init_fn, update_fn)