wav2vec2-base-finetuned-ks

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3550
  • Accuracy: 0.8727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 0.6840 0.6
0.6867 2.0 16 0.6780 0.6364
0.6742 3.0 24 0.6601 0.6182
0.6446 4.0 32 0.6294 0.6364
0.6299 5.0 40 0.6002 0.6727
0.6299 6.0 48 0.5755 0.7091
0.6021 7.0 56 0.5530 0.7273
0.5678 8.0 64 0.5036 0.8182
0.5512 9.0 72 0.4753 0.8545
0.4784 10.0 80 0.4184 0.9273
0.4784 11.0 88 0.4102 0.8909
0.4515 12.0 96 0.4444 0.8182
0.4878 13.0 104 0.3780 0.9091
0.4418 14.0 112 0.4570 0.8
0.4746 15.0 120 0.3870 0.8545
0.4746 16.0 128 0.3932 0.8364
0.4226 17.0 136 0.2779 0.9636
0.4301 18.0 144 0.3125 0.9455
0.3482 19.0 152 0.3212 0.9091
0.3611 20.0 160 0.3925 0.8364
0.3611 21.0 168 0.3389 0.8909
0.3507 22.0 176 0.3099 0.8727
0.3241 23.0 184 0.3120 0.8727
0.2533 24.0 192 0.2313 0.9455
0.2466 25.0 200 0.3550 0.8727

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.