metadata
license: llama3.1
library_name: transformers
base_model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
tags:
- mlx
model-index:
- name: Llama-3.1-8B-Lexi-Uncensored-V2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 77.92
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.69
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 16.92
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.36
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.77
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
name: Open LLM Leaderboard
Felprot75/Llama-3.1-8B-Lexi-Uncensored-V2-mlx
The Model Felprot75/Llama-3.1-8B-Lexi-Uncensored-V2-mlx was converted to MLX format from Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 using mlx-lm version 0.21.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Felprot75/Llama-3.1-8B-Lexi-Uncensored-V2-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)