SentenceTransformer based on mixedbread-ai/deepset-mxbai-embed-de-large-v1

This is a sentence-transformers model finetuned from mixedbread-ai/deepset-mxbai-embed-de-large-v1 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: mixedbread-ai/deepset-mxbai-embed-de-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("FareedKhan/mixedbread-ai_deepset-mxbai-embed-de-large-v1_FareedKhan_prime_synthetic_data_2k_3_8")
# Run inference
sentences = [
    '\nThe list you provided seems to be a mix of various chemical substances, some of which appear to be medications, others are chemical compounds, and a few could be substances from other fields (e.g., water treatment, food additives). To be more precise, it would be helpful to categorize them properly based on their common usage:\n\n### Medications and Drugs:\n- **Antibiotics**: Cefoxitin, Tobramycin, Amikacin\n- ** pain and inflammation relievers**: Benoxaprofen, Daptomycin, Ceftolozane, Salicylates (Benzydamine, Dexamethasone sodium phosphate)\n- **Intravenous fluids**: Magnesium trisilicate\n- **Antivirals**: Ribavirin, Inotersen\n- **Antibacterial agents**: Epirizole, Floctafenine, Flunixin\n- **Vaccines**: Vaborbactam, Brincidofovir, Adefovir\n- **Neuromodulators**: Cefatrizine, Bumadizone, Alminoprofen\n- **Cancer treatments**: Colistin, Nitrofurantoin, Sisomicin\n\n### Chemical Compounds:\n- **Salts and salts of acidity**: Fosfomycin, Azosemide, Mofebutazone\n- **Amino acids**: Phenylalanine, Nitrosalicylic',
    'Which drugs interact with the SERPINA1 gene/protein as carriers?',
    'Is there a regulatory function associated with the epidermal growth factor receptor or its interacting proteins in the control of genes or proteins that participate in the inactivation of fast sodium channels during Phase 1 of cardiac action potential propagation?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.3911
cosine_accuracy@3 0.4752
cosine_accuracy@5 0.495
cosine_accuracy@10 0.5545
cosine_precision@1 0.3911
cosine_precision@3 0.1584
cosine_precision@5 0.099
cosine_precision@10 0.0554
cosine_recall@1 0.3911
cosine_recall@3 0.4752
cosine_recall@5 0.495
cosine_recall@10 0.5545
cosine_ndcg@10 0.467
cosine_mrr@10 0.4398
cosine_map@100 0.4462

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 1,814 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 3 tokens
    • mean: 267.06 tokens
    • max: 512 tokens
    • min: 15 tokens
    • mean: 39.66 tokens
    • max: 120 tokens
  • Samples:
    positive anchor


    Based on the provided information, it appears you are describing a complex biological system involving various molecules, drugs, diseases, and anatomical structures. Here's a breakdown:

    ### Key Entities
    1. Molecules and Targets
    - Mentioned molecules include metabolites, phenols, and drugs, with specific functional groups related to their chemical properties.
    - Targets include enzymes (like acetyl-CoA carboxylase) and diseases causing various health conditions (e.g., Finnish type amyloidosis, lung cancer).

    2. Functionality and Interactions
    - The molecules and drugs interact with various biological processes, pathways, and bodily systems.
    Identify common genetic targets that interact with both N-(3,5-dibromo-4-hydroxyphenyl)benzamide and 1-Naphthylamine-5-sulfonic acid.

    The provided list appears to be a collection of gene symbols related to cancer. Gene symbols are used in genetics and molecular biology to identify genes. Each symbol is associated with a specific gene that plays a role in cellular functions, including cancer processes. When studying cancer, researchers often analyze these genes to understand their roles in tumor development, potential as targets for therapy, or as indicators for patient prognosis. For example, some genes listed are known oncogenes or tumor suppressor genes:

    - TP53: A tumor suppressor gene that when mutated can lead to uncontrolled cell growth.
    - P53, POLD1, PTEN: These are well-known tumor suppressors that help regulate cell division and DNA repair.
    - BRCA
    Which anatomical structures lack expression of genes or proteins involved in the homogentisate degradation pathway?


    The gene in question appears to have a wide range of functions across various biological processes and body systems. It's involved in several key areas that regulate cellular responses, metabolic processes, and organ development. Here is a summary of its potential roles:

    1. Cell Growth and Regulation: The gene contributes to growth control in cells, particularly in smooth muscle cells, and seems to influence cell proliferation, which is essential for tissue repair and development.

    2. Nerve Function: It plays a role in functions like signal transduction, neurotrophin signaling, and regulation of neural activity, suggesting it’s involved in neural health and development.

    3. Metabolic Processes: There is evidence linking
    Identify genes or proteins that interact with angiotensin-converting enzyme 2 (ACE2) and are linked to a common phenotype or effect.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768
        ],
        "matryoshka_weights": [
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • learning_rate: 1e-05
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_map@100
0 0 - 0.3930
0.0441 10 1.18 -
0.0881 20 1.0507 -
0.1322 30 0.9049 -
0.1762 40 0.8999 -
0.2203 50 0.6519 -
0.2643 60 0.5479 -
0.3084 70 0.6493 -
0.3524 80 0.4706 -
0.3965 90 0.5459 -
0.4405 100 0.5692 -
0.4846 110 0.7834 -
0.5286 120 0.5341 -
0.5727 130 0.5343 -
0.6167 140 0.4865 -
0.6608 150 0.3942 -
0.7048 160 0.3578 -
0.7489 170 0.5158 -
0.7930 180 0.3426 -
0.8370 190 0.5789 -
0.8811 200 0.5271 -
0.9251 210 0.577 -
0.9692 220 0.5193 -
1.0 227 - 0.4354
1.0132 230 0.4598 -
1.0573 240 0.2735 -
1.1013 250 0.2919 -
1.1454 260 0.3206 -
1.1894 270 0.2851 -
1.2335 280 0.3899 -
1.2775 290 0.3279 -
1.3216 300 0.2155 -
1.3656 310 0.3471 -
1.4097 320 0.327 -
1.4537 330 0.229 -
1.4978 340 0.2902 -
1.5419 350 0.3216 -
1.5859 360 0.2902 -
1.6300 370 0.4527 -
1.6740 380 0.1583 -
1.7181 390 0.3144 -
1.7621 400 0.2573 -
1.8062 410 0.2309 -
1.8502 420 0.3475 -
1.8943 430 0.3082 -
1.9383 440 0.3176 -
1.9824 450 0.2104 -
2.0 454 - 0.4453
2.0264 460 0.2615 -
2.0705 470 0.1599 -
2.1145 480 0.1015 -
2.1586 490 0.2154 -
2.2026 500 0.1161 -
2.2467 510 0.2208 -
2.2907 520 0.2035 -
2.3348 530 0.1622 -
2.3789 540 0.1758 -
2.4229 550 0.2782 -
2.4670 560 0.303 -
2.5110 570 0.1787 -
2.5551 580 0.2221 -
2.5991 590 0.1686 -
2.6432 600 0.2522 -
2.6872 610 0.1334 -
2.7313 620 0.1102 -
2.7753 630 0.2499 -
2.8194 640 0.2648 -
2.8634 650 0.1859 -
2.9075 660 0.2385 -
2.9515 670 0.2283 -
2.9956 680 0.1126 -
3.0 681 - 0.4462
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.1
  • PyTorch: 2.2.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
487M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FareedKhan/mixedbread-ai_deepset-mxbai-embed-de-large-v1_FareedKhan_prime_synthetic_data_2k_3_8

Finetuned
(3)
this model

Evaluation results