FabioDataGeek
commited on
Commit
·
48f1c0e
1
Parent(s):
78edf70
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +5 -5
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 279.41 +/- 14.48
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83c78d3790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83c78d3820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83c78d38b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83c78d3940>", "_build": "<function ActorCriticPolicy._build at 0x7f83c78d39d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83c78d3a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83c78d3af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83c78d3b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83c78d3c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83c78d3ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83c78d3d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83c78d3dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83c78d04b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673378628405608561, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0KwLxXw7U/isKGvrH8Lr3dW9a8TNAvvgAAAAAAAAAAzVUoPY9aE7o16ug6ZivqNLkHoLtNoAe6AAAAAAAAgD9mf8G8bra2P7P1d74a6s68OQTxvNWbCL4AAAAAAAAAAFp0jj1IDYa6UkOtvUNZjbaUCDA7Vn//NQAAAAAAAIA/AAzIu2xCuLu3tIw73G+KPISkDL26L2s9AACAPwAAgD9mKqM8j65hukv0WLjGWiGz7/VbOkjFfTcAAIA/AACAPyatNL6jBBA/m1LXPl45I79vJHK9jouUPgAAAAAAAAAAgNImPXG5VTogafC9OdFzvs+Ghr2n/cM+AACAPwAAAADNr3+9Cic0PhP0jj7/CwK/CE7jPSlKJj4AAAAAAAAAAICwE74AQLY/J7EQv4Fkir5PwXG+jS7SvgAAAAAAAAAA836aPRGfPT8ceAk+nHFgv9InBz5q5No9AAAAAAAAAAAaigM9z8wqvMMTj76aHdY8y2qAPbszz70AAIA/AACAP3ryML5vYfg+qL6lPqe3HL9ju1e9csJPPgAAAAAAAAAAzaBOvDyWeT3z+4g84ie5vt/KsjyYFek8AAAAAAAAAACzODk9YdbUPd0+HL5/qbe+knNCPf5qNr0AAAAAAAAAALNGRb2OvWQ/CmQyvW3tNL91y9u9IVUuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMGKfAErKcUCUhpRSlIwBbJRLwowBdJRHQJ9/jyGzru91fZQoaAZoCWgPQwh2+6wy02FvQJSGlFKUaBVLqWgWR0Cff8e8PFvRdX2UKGgGaAloD0MIgxPRr+3ocUCUhpRSlGgVTTYBaBZHQJ9/1DgIhQp1fZQoaAZoCWgPQwi9UStM34tzQJSGlFKUaBVL6GgWR0CfgA8/D+BIdX2UKGgGaAloD0MIfc7drhebcECUhpRSlGgVS7loFkdAn4BC1eBxxXV9lChoBmgJaA9DCJRt4A4Uu3BAlIaUUpRoFUvMaBZHQJ+Aat0V8Cx1fZQoaAZoCWgPQwiIoGr0KnFzQJSGlFKUaBVL4WgWR0CfgHiQDFIedX2UKGgGaAloD0MIy0i9p/JocUCUhpRSlGgVS6ZoFkdAn4ENnTRYzXV9lChoBmgJaA9DCDoktVAyolJAlIaUUpRoFUtmaBZHQJ+BaNcW0qp1fZQoaAZoCWgPQwh80/TZQXVwQJSGlFKUaBVLomgWR0CfgXVBlcyFdX2UKGgGaAloD0MIMzZ0s7+1cUCUhpRSlGgVS75oFkdAn4ITZcs19HV9lChoBmgJaA9DCGPVIMxtNXJAlIaUUpRoFUvFaBZHQJ+CI2hqTKV1fZQoaAZoCWgPQwgQdopVQyNxQJSGlFKUaBVLwWgWR0CfgxKZ2IO6dX2UKGgGaAloD0MIVvSHZp7hc0CUhpRSlGgVS9JoFkdAn4MaWkadc3V9lChoBmgJaA9DCHi13JmJxHJAlIaUUpRoFUveaBZHQJ/gOl41P311fZQoaAZoCWgPQwg4L058NcNyQJSGlFKUaBVLxGgWR0Cf4HPszEaVdX2UKGgGaAloD0MIRBZp4l0Mc0CUhpRSlGgVS7toFkdAn+CIkE9t/HV9lChoBmgJaA9DCNJSeTvCAnFAlIaUUpRoFUvCaBZHQJ/goK2KEWZ1fZQoaAZoCWgPQwhbKJmc2mlzQJSGlFKUaBVLrWgWR0Cf4KSyMUAUdX2UKGgGaAloD0MIlIPZBFi4cECUhpRSlGgVS6RoFkdAn+CnUH6dlXV9lChoBmgJaA9DCI5aYfqe6nJAlIaUUpRoFUu0aBZHQJ/g46q814x1fZQoaAZoCWgPQwiJDKt4Y5lxQJSGlFKUaBVLyWgWR0Cf4Py+6Ae8dX2UKGgGaAloD0MI7pQO1r9HcUCUhpRSlGgVS6FoFkdAn+EaC17Y03V9lChoBmgJaA9DCMbbSq+NBXJAlIaUUpRoFUuYaBZHQJ/hN9PUKAt1fZQoaAZoCWgPQwiMSuoEtGxxQJSGlFKUaBVLnmgWR0Cf4eRG+bmVdX2UKGgGaAloD0MIyjZwB+oSaECUhpRSlGgVTegDaBZHQJ/iI4ffXPJ1fZQoaAZoCWgPQwiGyVTB6IxzQJSGlFKUaBVLymgWR0Cf4i/SH/LldX2UKGgGaAloD0MIoHB2a9nrcUCUhpRSlGgVS6loFkdAn+IvDtPYWnV9lChoBmgJaA9DCHgq4J7nLlRAlIaUUpRoFUt1aBZHQJ/ileu3c591fZQoaAZoCWgPQwiyZmSQu+FxQJSGlFKUaBVLlmgWR0Cf4qtMfzSUdX2UKGgGaAloD0MIzY+/tKhzckCUhpRSlGgVS7loFkdAn+NGkadc0XV9lChoBmgJaA9DCPwdigJ9bHBAlIaUUpRoFUukaBZHQJ/joNb1RLt1fZQoaAZoCWgPQwinXOFdrkRzQJSGlFKUaBVLxGgWR0Cf4+JVbRnfdX2UKGgGaAloD0MIotPzbiz7cECUhpRSlGgVS7poFkdAn+QJnlGPP3V9lChoBmgJaA9DCCEHJcx0jHBAlIaUUpRoFUu8aBZHQJ/kFq9Gqgh1fZQoaAZoCWgPQwjiW1g3HrxwQJSGlFKUaBVLwWgWR0Cf5BUhFEy+dX2UKGgGaAloD0MIL7/TZAabcUCUhpRSlGgVS7doFkdAn+Q/kJa7mXV9lChoBmgJaA9DCMDOTZsxC3NAlIaUUpRoFUu4aBZHQJ/kXZ/Tb351fZQoaAZoCWgPQwhihzHp7zlzQJSGlFKUaBVLu2gWR0Cf5JNxlxwRdX2UKGgGaAloD0MIU5W2uMbdc0CUhpRSlGgVS7loFkdAn+SmsA/9pHV9lChoBmgJaA9DCAcmN4os8HNAlIaUUpRoFUu4aBZHQJ/lSMLncL11fZQoaAZoCWgPQwhqaAOwwfhxQJSGlFKUaBVLrGgWR0Cf5Ui+tbLVdX2UKGgGaAloD0MIUvLqHIMSc0CUhpRSlGgVS7loFkdAn+WOWfK6nXV9lChoBmgJaA9DCI7onnVNpXJAlIaUUpRoFUvVaBZHQJ/mGHXVbzN1fZQoaAZoCWgPQwhQOLu1TOBwQJSGlFKUaBVLwWgWR0Cf5iY8Md92dX2UKGgGaAloD0MIVcA9z58/c0CUhpRSlGgVS8VoFkdAn+ZNUGVzIXV9lChoBmgJaA9DCJt2Mc30AHJAlIaUUpRoFUuvaBZHQJ/mg9A5aNd1fZQoaAZoCWgPQwg6sYf2scpwQJSGlFKUaBVLwGgWR0Cf5y0lZ5iWdX2UKGgGaAloD0MIbhYvFoa5cUCUhpRSlGgVS7hoFkdAn+dqBVdX1nV9lChoBmgJaA9DCMlaQ6l9HXJAlIaUUpRoFUu8aBZHQJ/nh7KJVKh1fZQoaAZoCWgPQwiiKTv9oHxyQJSGlFKUaBVLvWgWR0Cf548ohIOIdX2UKGgGaAloD0MICHdn7TajckCUhpRSlGgVS61oFkdAn+e7A57w8XV9lChoBmgJaA9DCL4z2qok5EpAlIaUUpRoFUuHaBZHQJ/nyLUCq6x1fZQoaAZoCWgPQwi8kA4P4YVyQJSGlFKUaBVLymgWR0Cf6BKujh1ldX2UKGgGaAloD0MIf6Dctq8dc0CUhpRSlGgVS+doFkdAn+gfYnOSn3V9lChoBmgJaA9DCGo0uRhD9nNAlIaUUpRoFUvVaBZHQJ/oJm4Ajpt1fZQoaAZoCWgPQwj8j0yHjgtyQJSGlFKUaBVLxmgWR0Cf6D/h2nsLdX2UKGgGaAloD0MIB+5AnXI5c0CUhpRSlGgVS7FoFkdAn+jHwXqJM3V9lChoBmgJaA9DCC0+BcB4om9AlIaUUpRoFUuuaBZHQJ/pvhLoOhF1fZQoaAZoCWgPQwgou5nRj9BxQJSGlFKUaBVLzGgWR0Cf6fOC5EtvdX2UKGgGaAloD0MIlZ9U+3QNcUCUhpRSlGgVS9JoFkdAn+pGecx0uHV9lChoBmgJaA9DCIv/O6LCSHFAlIaUUpRoFUulaBZHQJ/qUkgOjIt1fZQoaAZoCWgPQwh41QPmIShxQJSGlFKUaBVL9mgWR0Cf6sRoAXEZdX2UKGgGaAloD0MIgCvZsVEpckCUhpRSlGgVTSwBaBZHQJ/q+iCaqjt1fZQoaAZoCWgPQwgcl3FTw9RyQJSGlFKUaBVLu2gWR0Cf6wRTjvNNdX2UKGgGaAloD0MIAb7bvHFvckCUhpRSlGgVS7VoFkdAn+sGGqPwNXV9lChoBmgJaA9DCCDT2jR2CXBAlIaUUpRoFUu9aBZHQJ/rzxkNF0B1fZQoaAZoCWgPQwh9IHnnkNtyQJSGlFKUaBVL4GgWR0Cf6+FUADJVdX2UKGgGaAloD0MIs+4fC9F/c0CUhpRSlGgVS9ZoFkdAn+w/47A+IXV9lChoBmgJaA9DCLBW7ZpQC3NAlIaUUpRoFUvuaBZHQJ/sWofjjrB1fZQoaAZoCWgPQwgHYAMixERQQJSGlFKUaBVLhmgWR0Cf7HCmuTzNdX2UKGgGaAloD0MIYi0+BYD+cUCUhpRSlGgVS/FoFkdAn+x5pztCzHV9lChoBmgJaA9DCPfN/dVjCHNAlIaUUpRoFUvdaBZHQJ/smaWom5V1fZQoaAZoCWgPQwg5nPnVXMRzQJSGlFKUaBVL+WgWR0Cf7QaufVZtdX2UKGgGaAloD0MI/pqsUc+UcUCUhpRSlGgVS9VoFkdAn+0JtSAH3XV9lChoBmgJaA9DCNCdYP91E29AlIaUUpRoFUvJaBZHQJ/t28Hv+fh1fZQoaAZoCWgPQwiKdD+noMpxQJSGlFKUaBVLvGgWR0Cf7eUDdP+GdX2UKGgGaAloD0MI8E4+PTbicECUhpRSlGgVS6NoFkdAn+4jSG8Em3V9lChoBmgJaA9DCPeTMT5MMHJAlIaUUpRoFUu7aBZHQJ/uWKekHlh1fZQoaAZoCWgPQwgtXiwM0YdyQJSGlFKUaBVL3GgWR0Cf7opsXSBtdX2UKGgGaAloD0MIiL1QwDYicUCUhpRSlGgVS5VoFkdAn+6iIgvDg3V9lChoBmgJaA9DCJoJhnONyHJAlIaUUpRoFUvQaBZHQJ/u7XRPXTV1fZQoaAZoCWgPQwjgLvt1Z0NxQJSGlFKUaBVLyGgWR0Cf76hKDkELdX2UKGgGaAloD0MINLqD2BnzcUCUhpRSlGgVS7JoFkdAn+/GxY7q6nV9lChoBmgJaA9DCNS19j6VJHJAlIaUUpRoFUu3aBZHQJ/v6FRHf/F1fZQoaAZoCWgPQwgsRfKVwJZzQJSGlFKUaBVLz2gWR0Cf8CogV45cdX2UKGgGaAloD0MI1SZO7rduc0CUhpRSlGgVS8JoFkdAn/BAAp8WsXV9lChoBmgJaA9DCMb9R6bDbXFAlIaUUpRoFUvSaBZHQJ/xEe6qbSZ1fZQoaAZoCWgPQwhuwVJdAJRxQJSGlFKUaBVL1mgWR0Cf8SP/JeVtdX2UKGgGaAloD0MIkMAffr42c0CUhpRSlGgVS7doFkdAn/F3WFvhqHV9lChoBmgJaA9DCGr7V1aa43FAlIaUUpRoFUu2aBZHQJ/xfBP9DQZ1fZQoaAZoCWgPQwibkUHuYvBxQJSGlFKUaBVLtGgWR0Cf8a+AEt/XdX2UKGgGaAloD0MIqKYk6zAsckCUhpRSlGgVS55oFkdAn/HHvttygnV9lChoBmgJaA9DCCkjLgDNiHJAlIaUUpRoFUukaBZHQJ/xzPnjhk11fZQoaAZoCWgPQwj4+e/BKztyQJSGlFKUaBVLsmgWR0Cf8dxyGSIQdX2UKGgGaAloD0MIO29js+PNcECUhpRSlGgVS5loFkdAn/MD5GjKxXV9lChoBmgJaA9DCCulZ3qJ73BAlIaUUpRoFUvQaBZHQJ/zGIYWLxZ1fZQoaAZoCWgPQwjD1QEQd7hwQJSGlFKUaBVNZQFoFkdAn/NUHD766HV9lChoBmgJaA9DCASqfxAJeXBAlIaUUpRoFUvDaBZHQJ/zm0ngHeJ1fZQoaAZoCWgPQwjNH9Pa9ExyQJSGlFKUaBVLq2gWR0Cf86JAdGRWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83c78d3790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83c78d3820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83c78d38b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83c78d3940>", "_build": "<function ActorCriticPolicy._build at 0x7f83c78d39d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83c78d3a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83c78d3af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83c78d3b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83c78d3c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83c78d3ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83c78d3d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83c78d3dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83c78d04b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673381269094340343, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAymrxUerw/PIygvXYWar7AP9y8eyz5OwAAAAAAAAAAYHAmvnA7WD+FnpK907D/voT0EL7NMIy8AAAAAAAAAACAB2m9PQ4Qu+Zhg7vA9Ks83qOjPGnikr0AAIA/AACAP1rduT2T/JY+oHxXPMNdur4Hc/A8HePWuwAAAAAAAAAA+tggvprkfD5L+4M+G/auvoLItLwx1SI9AAAAAAAAAADNTFy7yYG1PzZWrr5woaE+r7d/O6n1nT0AAAAAAAAAACaVkr29Ei0+65lpPhRNu77vhbA6dnLiPAAAAAAAAAAAMzmUvE4aeD+YVVG9TWkXv5ef4rz6dDi9AAAAAAAAAACacWu7pd2BP6nwGL0+lxe/NmgkvOKL9bwAAAAAAAAAABpmUr3D0he8JsMlPEpPRzxOBYQ9OgcpvQAAgD8AAIA/5l8KPo/Ipj8BGRs/66DMvmTvGz4vasw+AAAAAAAAAACNdYE9SkCmP3ZJ0z4usPS+i6GrPSBMaD4AAAAAAAAAAABo9r2c0Zw+OAG4PLntkr7q1XO9z+44PQAAAAAAAAAA5mkCvhQFpD5P0y8+S0LBvkMUNr3+CFw9AAAAAAAAAAAAJ8g8XHtyujb1k7Uk+muwJxUOuRTKsTQAAIA/AACAPxqzzr1YM9Y+k6eXuqVitL6UWGy9cLRJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9kVCW46vcECUhpRSlIwBbJRL4YwBdJRHQLMpKdUsFt91fZQoaAZoCWgPQwgAdJgvr9FvQJSGlFKUaBVLwGgWR0CzKVInKGL2dX2UKGgGaAloD0MIIxCv65evcECUhpRSlGgVS7xoFkdAsymNt52Qn3V9lChoBmgJaA9DCDNslPUbiXFAlIaUUpRoFU0JAWgWR0CzKZRYzSCwdX2UKGgGaAloD0MIeGFrtvJVcUCUhpRSlGgVS/JoFkdAsymgGs3hoHV9lChoBmgJaA9DCLbWFwntE3FAlIaUUpRoFUvTaBZHQLMppANXo1V1fZQoaAZoCWgPQwjudygKdNNxQJSGlFKUaBVNFQFoFkdAsymxh4MWoHV9lChoBmgJaA9DCLRZ9bkaf3JAlIaUUpRoFUvlaBZHQLMptPikwex1fZQoaAZoCWgPQwiKkpBIG7hwQJSGlFKUaBVL+2gWR0CzKeoBikO7dX2UKGgGaAloD0MI3nU25B8kckCUhpRSlGgVS/FoFkdAsyn4QpWmxnV9lChoBmgJaA9DCAHaVrPOIHBAlIaUUpRoFUvTaBZHQLMqLYQrc0t1fZQoaAZoCWgPQwgdccgGUgZxQJSGlFKUaBVLumgWR0CzKjrzoUzsdX2UKGgGaAloD0MI/plBfGDmcECUhpRSlGgVS/xoFkdAsyo+maYu03V9lChoBmgJaA9DCNibGJITe3FAlIaUUpRoFU0FAWgWR0CzKn4jB2wFdX2UKGgGaAloD0MIAB+8dimLcUCUhpRSlGgVTQgBaBZHQLMqgzltCRh1fZQoaAZoCWgPQwjytWeWxOVwQJSGlFKUaBVNDQFoFkdAsyqbz6JqI3V9lChoBmgJaA9DCM0+j1FepHJAlIaUUpRoFU0AAWgWR0CzKrf0ulGgdX2UKGgGaAloD0MIAySaQBHLbkCUhpRSlGgVS8xoFkdAsyrSTzND+nV9lChoBmgJaA9DCEflJmrpNXJAlIaUUpRoFUvgaBZHQLMq7GUwBYF1fZQoaAZoCWgPQwiEYitoWn1yQJSGlFKUaBVNCQFoFkdAsyrx9Tgl4XV9lChoBmgJaA9DCP+VlSYlanJAlIaUUpRoFUveaBZHQLMq/P4mCy11fZQoaAZoCWgPQwiZRSi2ghlzQJSGlFKUaBVL12gWR0CzKwZ3os7NdX2UKGgGaAloD0MI5ldzgCAPckCUhpRSlGgVS/JoFkdAsysd7qptJnV9lChoBmgJaA9DCHWRQln46m1AlIaUUpRoFUvDaBZHQLMrLhmoR7J1fZQoaAZoCWgPQwjUY1sGnAxxQJSGlFKUaBVLzWgWR0CzKzEcbR4RdX2UKGgGaAloD0MIFY21vzMQcECUhpRSlGgVS9loFkdAsyuUm1IAfnV9lChoBmgJaA9DCInPnWA/r3JAlIaUUpRoFUvraBZHQLMrogG8mKJ1fZQoaAZoCWgPQwj7WMFvwwVwQJSGlFKUaBVLw2gWR0CzK7aTbFjvdX2UKGgGaAloD0MIcAnAP+WGcUCUhpRSlGgVS+9oFkdAsyu2uHN5dHV9lChoBmgJaA9DCOhM2lRdd29AlIaUUpRoFUvQaBZHQLNDvjTrmhd1fZQoaAZoCWgPQwjNsbyrHgtxQJSGlFKUaBVL/GgWR0CzQ+nzYmLMdX2UKGgGaAloD0MI56kOuRm5cECUhpRSlGgVS7doFkdAs0QGJwbVBnV9lChoBmgJaA9DCMZq8/9qQXNAlIaUUpRoFUvyaBZHQLNEGRkEs8R1fZQoaAZoCWgPQwh4eqUsw5FxQJSGlFKUaBVLzWgWR0CzRCHivPkadX2UKGgGaAloD0MIBvGBHX/ickCUhpRSlGgVS9doFkdAs0QjX+VC5XV9lChoBmgJaA9DCCeh9IVQdHFAlIaUUpRoFUu+aBZHQLNELnk1dgR1fZQoaAZoCWgPQwj0jH3JBnFxQJSGlFKUaBVL5mgWR0CzRD9ucc2jdX2UKGgGaAloD0MIv/IgPQWbc0CUhpRSlGgVS/1oFkdAs0RERFqi5HV9lChoBmgJaA9DCH1Yb9SKInBAlIaUUpRoFUvbaBZHQLNEbHyVfNR1fZQoaAZoCWgPQwgiT5KuGd5xQJSGlFKUaBVL6mgWR0CzRIAHAymAdX2UKGgGaAloD0MI8L+V7JgWcUCUhpRSlGgVS9ZoFkdAs0TGe7L+xXV9lChoBmgJaA9DCG2P3nAfXXNAlIaUUpRoFUvFaBZHQLNEyyMDOkd1fZQoaAZoCWgPQwhTJF8JJOVwQJSGlFKUaBVL32gWR0CzRPSkfs/qdX2UKGgGaAloD0MINCvbhzwucECUhpRSlGgVS8toFkdAs0UD6pHZsnV9lChoBmgJaA9DCOLmVDKAUm9AlIaUUpRoFUvJaBZHQLNFKvgFX7t1fZQoaAZoCWgPQwgxJCcT9wxyQJSGlFKUaBVNKQFoFkdAs0VhaePJaXV9lChoBmgJaA9DCGtj7IQXWHBAlIaUUpRoFUvGaBZHQLNFbZk078x1fZQoaAZoCWgPQwhDc51GWrVvQJSGlFKUaBVLxGgWR0CzRX4371qWdX2UKGgGaAloD0MITWVR2EWEckCUhpRSlGgVS/BoFkdAs0WPFVDKHXV9lChoBmgJaA9DCNe9FYmJgm5AlIaUUpRoFUvkaBZHQLNFlWS2Yv51fZQoaAZoCWgPQwhHH/MBAdpwQJSGlFKUaBVL9WgWR0CzRaio0hvBdX2UKGgGaAloD0MI0sYRa7EkckCUhpRSlGgVS/doFkdAs0W0F7laKXV9lChoBmgJaA9DCCU7NgKxKXBAlIaUUpRoFUvFaBZHQLNFx/ZuhsZ1fZQoaAZoCWgPQwjdPxaig0JzQJSGlFKUaBVL9WgWR0CzRdS31BdEdX2UKGgGaAloD0MITg00nzPzcECUhpRSlGgVS+xoFkdAs0Xx4HHFP3V9lChoBmgJaA9DCAQb179r225AlIaUUpRoFUu+aBZHQLNGCvkBCD51fZQoaAZoCWgPQwhzvth7sXpxQJSGlFKUaBVL3GgWR0CzRjgiV0LddX2UKGgGaAloD0MI7Es2Hux6cUCUhpRSlGgVS85oFkdAs0ZhdKNADHV9lChoBmgJaA9DCIfddwyP025AlIaUUpRoFUvoaBZHQLNGgG/vfCR1fZQoaAZoCWgPQwgYz6Chf1NyQJSGlFKUaBVL0WgWR0CzRtMjZ+QVdX2UKGgGaAloD0MIxsIQOf35bUCUhpRSlGgVS8toFkdAs0bt0KZ2IXV9lChoBmgJaA9DCAcoDTVKeXJAlIaUUpRoFU0FAWgWR0CzRvNRWLgodX2UKGgGaAloD0MIUKkSZW8hckCUhpRSlGgVS+1oFkdAs0b+ews5GXV9lChoBmgJaA9DCP8h/fb1r25AlIaUUpRoFUvhaBZHQLNHBIBikO91fZQoaAZoCWgPQwhqiZXRiE1wQJSGlFKUaBVLy2gWR0CzRwoXbdrPdX2UKGgGaAloD0MI8Nx7uOT2ckCUhpRSlGgVS95oFkdAs0cWeDnNgXV9lChoBmgJaA9DCFAYlGm0Cm9AlIaUUpRoFUvMaBZHQLNHK3A2ycF1fZQoaAZoCWgPQwgNjLysScpwQJSGlFKUaBVNBAFoFkdAs0dziOvMbHV9lChoBmgJaA9DCBnL9EuEpXJAlIaUUpRoFUv0aBZHQLNHfNpM6BB1fZQoaAZoCWgPQwir7Lsi+M5zQJSGlFKUaBVL42gWR0CzR5nYUWVNdX2UKGgGaAloD0MIP6vMlNZockCUhpRSlGgVS/1oFkdAs0ep03fhuXV9lChoBmgJaA9DCPTCnQsjmGFAlIaUUpRoFU3oA2gWR0CzR/fYJ3PidX2UKGgGaAloD0MIHbCryRNtckCUhpRSlGgVTQkBaBZHQLNIB+3Ytg91fZQoaAZoCWgPQwhMjdDP1ClWQJSGlFKUaBVLnmgWR0CzSAlhgE2YdX2UKGgGaAloD0MItf0rK01BcUCUhpRSlGgVS+hoFkdAs0gU5BC2MXV9lChoBmgJaA9DCCbfbHPjrXFAlIaUUpRoFU0FAWgWR0CzSCezIFNddX2UKGgGaAloD0MIJy8yAf/7cECUhpRSlGgVS8ZoFkdAs0hACA+Y+nV9lChoBmgJaA9DCALTad0GAXJAlIaUUpRoFUvwaBZHQLNIa8kD6nB1fZQoaAZoCWgPQwi3eeOksIxvQJSGlFKUaBVL5GgWR0CzSG6zu4PPdX2UKGgGaAloD0MIMlhxqrXfcUCUhpRSlGgVS+loFkdAs0icIRh+fHV9lChoBmgJaA9DCM+FkV7Um3JAlIaUUpRoFUv3aBZHQLNIpqGUOd51fZQoaAZoCWgPQwht5pDUQrdvQJSGlFKUaBVLv2gWR0CzSLJtix3WdX2UKGgGaAloD0MI8pVASqwzcUCUhpRSlGgVS/NoFkdAs0i/fNzKcXV9lChoBmgJaA9DCL5r0JeeY3FAlIaUUpRoFU0QAWgWR0CzSMeJk5IZdX2UKGgGaAloD0MIKEaWzHEOcECUhpRSlGgVS81oFkdAs0jN46fapXV9lChoBmgJaA9DCFc9YB6yKHBAlIaUUpRoFUu+aBZHQLNI3jsD4g11fZQoaAZoCWgPQwiLcf4mlGpwQJSGlFKUaBVL4GgWR0CzSQFCLMs6dX2UKGgGaAloD0MI+FCiJY81cECUhpRSlGgVS8BoFkdAs0k+vB7/oHV9lChoBmgJaA9DCOTziqeelnFAlIaUUpRoFUvMaBZHQLNJRSApazN1fZQoaAZoCWgPQwjq7GRwVPpxQJSGlFKUaBVL2GgWR0CzSX1Pva11dX2UKGgGaAloD0MI/wQXKyr/cUCUhpRSlGgVS+9oFkdAs0mGAOJ+D3V9lChoBmgJaA9DCCwQPSnTEXFAlIaUUpRoFUuzaBZHQLNJiDneSB91fZQoaAZoCWgPQwiiDFUxFXpyQJSGlFKUaBVNCQFoFkdAs0mgSg5BC3V9lChoBmgJaA9DCFD/WfPjwFNAlIaUUpRoFUuoaBZHQLNJu668QI51fZQoaAZoCWgPQwjgSnZsRGxxQJSGlFKUaBVL/GgWR0CzSdN9MK1HdX2UKGgGaAloD0MIsoAJ3PqycECUhpRSlGgVS/NoFkdAs0nzWf9P13V9lChoBmgJaA9DCCr9hLObjnBAlIaUUpRoFUvgaBZHQLNKDynk1dh1fZQoaAZoCWgPQwiBd/Lp8ZpzQJSGlFKUaBVL7WgWR0CzShpIH1OCdX2UKGgGaAloD0MI1IGsp1YFb0CUhpRSlGgVS8VoFkdAs0oij3225XV9lChoBmgJaA9DCENWt3pOVG5AlIaUUpRoFUu6aBZHQLNKNhL5AQh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4a4b066ebeae1a26422271e5c2dbf4f9660dee770f1670b4f4ec47d159e9385
|
3 |
+
size 147311
|
ppo-LunarLander-v2/data
CHANGED
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,11 +57,11 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
@@ -79,7 +79,7 @@
|
|
79 |
"_n_updates": 620,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1673381269094340343,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAymrxUerw/PIygvXYWar7AP9y8eyz5OwAAAAAAAAAAYHAmvnA7WD+FnpK907D/voT0EL7NMIy8AAAAAAAAAACAB2m9PQ4Qu+Zhg7vA9Ks83qOjPGnikr0AAIA/AACAP1rduT2T/JY+oHxXPMNdur4Hc/A8HePWuwAAAAAAAAAA+tggvprkfD5L+4M+G/auvoLItLwx1SI9AAAAAAAAAADNTFy7yYG1PzZWrr5woaE+r7d/O6n1nT0AAAAAAAAAACaVkr29Ei0+65lpPhRNu77vhbA6dnLiPAAAAAAAAAAAMzmUvE4aeD+YVVG9TWkXv5ef4rz6dDi9AAAAAAAAAACacWu7pd2BP6nwGL0+lxe/NmgkvOKL9bwAAAAAAAAAABpmUr3D0he8JsMlPEpPRzxOBYQ9OgcpvQAAgD8AAIA/5l8KPo/Ipj8BGRs/66DMvmTvGz4vasw+AAAAAAAAAACNdYE9SkCmP3ZJ0z4usPS+i6GrPSBMaD4AAAAAAAAAAABo9r2c0Zw+OAG4PLntkr7q1XO9z+44PQAAAAAAAAAA5mkCvhQFpD5P0y8+S0LBvkMUNr3+CFw9AAAAAAAAAAAAJ8g8XHtyujb1k7Uk+muwJxUOuRTKsTQAAIA/AACAPxqzzr1YM9Y+k6eXuqVitL6UWGy9cLRJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9kVCW46vcECUhpRSlIwBbJRL4YwBdJRHQLMpKdUsFt91fZQoaAZoCWgPQwgAdJgvr9FvQJSGlFKUaBVLwGgWR0CzKVInKGL2dX2UKGgGaAloD0MIIxCv65evcECUhpRSlGgVS7xoFkdAsymNt52Qn3V9lChoBmgJaA9DCDNslPUbiXFAlIaUUpRoFU0JAWgWR0CzKZRYzSCwdX2UKGgGaAloD0MIeGFrtvJVcUCUhpRSlGgVS/JoFkdAsymgGs3hoHV9lChoBmgJaA9DCLbWFwntE3FAlIaUUpRoFUvTaBZHQLMppANXo1V1fZQoaAZoCWgPQwjudygKdNNxQJSGlFKUaBVNFQFoFkdAsymxh4MWoHV9lChoBmgJaA9DCLRZ9bkaf3JAlIaUUpRoFUvlaBZHQLMptPikwex1fZQoaAZoCWgPQwiKkpBIG7hwQJSGlFKUaBVL+2gWR0CzKeoBikO7dX2UKGgGaAloD0MI3nU25B8kckCUhpRSlGgVS/FoFkdAsyn4QpWmxnV9lChoBmgJaA9DCAHaVrPOIHBAlIaUUpRoFUvTaBZHQLMqLYQrc0t1fZQoaAZoCWgPQwgdccgGUgZxQJSGlFKUaBVLumgWR0CzKjrzoUzsdX2UKGgGaAloD0MI/plBfGDmcECUhpRSlGgVS/xoFkdAsyo+maYu03V9lChoBmgJaA9DCNibGJITe3FAlIaUUpRoFU0FAWgWR0CzKn4jB2wFdX2UKGgGaAloD0MIAB+8dimLcUCUhpRSlGgVTQgBaBZHQLMqgzltCRh1fZQoaAZoCWgPQwjytWeWxOVwQJSGlFKUaBVNDQFoFkdAsyqbz6JqI3V9lChoBmgJaA9DCM0+j1FepHJAlIaUUpRoFU0AAWgWR0CzKrf0ulGgdX2UKGgGaAloD0MIAySaQBHLbkCUhpRSlGgVS8xoFkdAsyrSTzND+nV9lChoBmgJaA9DCEflJmrpNXJAlIaUUpRoFUvgaBZHQLMq7GUwBYF1fZQoaAZoCWgPQwiEYitoWn1yQJSGlFKUaBVNCQFoFkdAsyrx9Tgl4XV9lChoBmgJaA9DCP+VlSYlanJAlIaUUpRoFUveaBZHQLMq/P4mCy11fZQoaAZoCWgPQwiZRSi2ghlzQJSGlFKUaBVL12gWR0CzKwZ3os7NdX2UKGgGaAloD0MI5ldzgCAPckCUhpRSlGgVS/JoFkdAsysd7qptJnV9lChoBmgJaA9DCHWRQln46m1AlIaUUpRoFUvDaBZHQLMrLhmoR7J1fZQoaAZoCWgPQwjUY1sGnAxxQJSGlFKUaBVLzWgWR0CzKzEcbR4RdX2UKGgGaAloD0MIFY21vzMQcECUhpRSlGgVS9loFkdAsyuUm1IAfnV9lChoBmgJaA9DCInPnWA/r3JAlIaUUpRoFUvraBZHQLMrogG8mKJ1fZQoaAZoCWgPQwj7WMFvwwVwQJSGlFKUaBVLw2gWR0CzK7aTbFjvdX2UKGgGaAloD0MIcAnAP+WGcUCUhpRSlGgVS+9oFkdAsyu2uHN5dHV9lChoBmgJaA9DCOhM2lRdd29AlIaUUpRoFUvQaBZHQLNDvjTrmhd1fZQoaAZoCWgPQwjNsbyrHgtxQJSGlFKUaBVL/GgWR0CzQ+nzYmLMdX2UKGgGaAloD0MI56kOuRm5cECUhpRSlGgVS7doFkdAs0QGJwbVBnV9lChoBmgJaA9DCMZq8/9qQXNAlIaUUpRoFUvyaBZHQLNEGRkEs8R1fZQoaAZoCWgPQwh4eqUsw5FxQJSGlFKUaBVLzWgWR0CzRCHivPkadX2UKGgGaAloD0MIBvGBHX/ickCUhpRSlGgVS9doFkdAs0QjX+VC5XV9lChoBmgJaA9DCCeh9IVQdHFAlIaUUpRoFUu+aBZHQLNELnk1dgR1fZQoaAZoCWgPQwj0jH3JBnFxQJSGlFKUaBVL5mgWR0CzRD9ucc2jdX2UKGgGaAloD0MIv/IgPQWbc0CUhpRSlGgVS/1oFkdAs0RERFqi5HV9lChoBmgJaA9DCH1Yb9SKInBAlIaUUpRoFUvbaBZHQLNEbHyVfNR1fZQoaAZoCWgPQwgiT5KuGd5xQJSGlFKUaBVL6mgWR0CzRIAHAymAdX2UKGgGaAloD0MI8L+V7JgWcUCUhpRSlGgVS9ZoFkdAs0TGe7L+xXV9lChoBmgJaA9DCG2P3nAfXXNAlIaUUpRoFUvFaBZHQLNEyyMDOkd1fZQoaAZoCWgPQwhTJF8JJOVwQJSGlFKUaBVL32gWR0CzRPSkfs/qdX2UKGgGaAloD0MINCvbhzwucECUhpRSlGgVS8toFkdAs0UD6pHZsnV9lChoBmgJaA9DCOLmVDKAUm9AlIaUUpRoFUvJaBZHQLNFKvgFX7t1fZQoaAZoCWgPQwgxJCcT9wxyQJSGlFKUaBVNKQFoFkdAs0VhaePJaXV9lChoBmgJaA9DCGtj7IQXWHBAlIaUUpRoFUvGaBZHQLNFbZk078x1fZQoaAZoCWgPQwhDc51GWrVvQJSGlFKUaBVLxGgWR0CzRX4371qWdX2UKGgGaAloD0MITWVR2EWEckCUhpRSlGgVS/BoFkdAs0WPFVDKHXV9lChoBmgJaA9DCNe9FYmJgm5AlIaUUpRoFUvkaBZHQLNFlWS2Yv51fZQoaAZoCWgPQwhHH/MBAdpwQJSGlFKUaBVL9WgWR0CzRaio0hvBdX2UKGgGaAloD0MI0sYRa7EkckCUhpRSlGgVS/doFkdAs0W0F7laKXV9lChoBmgJaA9DCCU7NgKxKXBAlIaUUpRoFUvFaBZHQLNFx/ZuhsZ1fZQoaAZoCWgPQwjdPxaig0JzQJSGlFKUaBVL9WgWR0CzRdS31BdEdX2UKGgGaAloD0MITg00nzPzcECUhpRSlGgVS+xoFkdAs0Xx4HHFP3V9lChoBmgJaA9DCAQb179r225AlIaUUpRoFUu+aBZHQLNGCvkBCD51fZQoaAZoCWgPQwhzvth7sXpxQJSGlFKUaBVL3GgWR0CzRjgiV0LddX2UKGgGaAloD0MI7Es2Hux6cUCUhpRSlGgVS85oFkdAs0ZhdKNADHV9lChoBmgJaA9DCIfddwyP025AlIaUUpRoFUvoaBZHQLNGgG/vfCR1fZQoaAZoCWgPQwgYz6Chf1NyQJSGlFKUaBVL0WgWR0CzRtMjZ+QVdX2UKGgGaAloD0MIxsIQOf35bUCUhpRSlGgVS8toFkdAs0bt0KZ2IXV9lChoBmgJaA9DCAcoDTVKeXJAlIaUUpRoFU0FAWgWR0CzRvNRWLgodX2UKGgGaAloD0MIUKkSZW8hckCUhpRSlGgVS+1oFkdAs0b+ews5GXV9lChoBmgJaA9DCP8h/fb1r25AlIaUUpRoFUvhaBZHQLNHBIBikO91fZQoaAZoCWgPQwhqiZXRiE1wQJSGlFKUaBVLy2gWR0CzRwoXbdrPdX2UKGgGaAloD0MI8Nx7uOT2ckCUhpRSlGgVS95oFkdAs0cWeDnNgXV9lChoBmgJaA9DCFAYlGm0Cm9AlIaUUpRoFUvMaBZHQLNHK3A2ycF1fZQoaAZoCWgPQwgNjLysScpwQJSGlFKUaBVNBAFoFkdAs0dziOvMbHV9lChoBmgJaA9DCBnL9EuEpXJAlIaUUpRoFUv0aBZHQLNHfNpM6BB1fZQoaAZoCWgPQwir7Lsi+M5zQJSGlFKUaBVL42gWR0CzR5nYUWVNdX2UKGgGaAloD0MIP6vMlNZockCUhpRSlGgVS/1oFkdAs0ep03fhuXV9lChoBmgJaA9DCPTCnQsjmGFAlIaUUpRoFU3oA2gWR0CzR/fYJ3PidX2UKGgGaAloD0MIHbCryRNtckCUhpRSlGgVTQkBaBZHQLNIB+3Ytg91fZQoaAZoCWgPQwhMjdDP1ClWQJSGlFKUaBVLnmgWR0CzSAlhgE2YdX2UKGgGaAloD0MItf0rK01BcUCUhpRSlGgVS+hoFkdAs0gU5BC2MXV9lChoBmgJaA9DCCbfbHPjrXFAlIaUUpRoFU0FAWgWR0CzSCezIFNddX2UKGgGaAloD0MIJy8yAf/7cECUhpRSlGgVS8ZoFkdAs0hACA+Y+nV9lChoBmgJaA9DCALTad0GAXJAlIaUUpRoFUvwaBZHQLNIa8kD6nB1fZQoaAZoCWgPQwi3eeOksIxvQJSGlFKUaBVL5GgWR0CzSG6zu4PPdX2UKGgGaAloD0MIMlhxqrXfcUCUhpRSlGgVS+loFkdAs0icIRh+fHV9lChoBmgJaA9DCM+FkV7Um3JAlIaUUpRoFUv3aBZHQLNIpqGUOd51fZQoaAZoCWgPQwht5pDUQrdvQJSGlFKUaBVLv2gWR0CzSLJtix3WdX2UKGgGaAloD0MI8pVASqwzcUCUhpRSlGgVS/NoFkdAs0i/fNzKcXV9lChoBmgJaA9DCL5r0JeeY3FAlIaUUpRoFU0QAWgWR0CzSMeJk5IZdX2UKGgGaAloD0MIKEaWzHEOcECUhpRSlGgVS81oFkdAs0jN46fapXV9lChoBmgJaA9DCFc9YB6yKHBAlIaUUpRoFUu+aBZHQLNI3jsD4g11fZQoaAZoCWgPQwiLcf4mlGpwQJSGlFKUaBVL4GgWR0CzSQFCLMs6dX2UKGgGaAloD0MI+FCiJY81cECUhpRSlGgVS8BoFkdAs0k+vB7/oHV9lChoBmgJaA9DCOTziqeelnFAlIaUUpRoFUvMaBZHQLNJRSApazN1fZQoaAZoCWgPQwjq7GRwVPpxQJSGlFKUaBVL2GgWR0CzSX1Pva11dX2UKGgGaAloD0MI/wQXKyr/cUCUhpRSlGgVS+9oFkdAs0mGAOJ+D3V9lChoBmgJaA9DCCwQPSnTEXFAlIaUUpRoFUuzaBZHQLNJiDneSB91fZQoaAZoCWgPQwiiDFUxFXpyQJSGlFKUaBVNCQFoFkdAs0mgSg5BC3V9lChoBmgJaA9DCFD/WfPjwFNAlIaUUpRoFUuoaBZHQLNJu668QI51fZQoaAZoCWgPQwjgSnZsRGxxQJSGlFKUaBVL/GgWR0CzSdN9MK1HdX2UKGgGaAloD0MIsoAJ3PqycECUhpRSlGgVS/NoFkdAs0nzWf9P13V9lChoBmgJaA9DCCr9hLObjnBAlIaUUpRoFUvgaBZHQLNKDynk1dh1fZQoaAZoCWgPQwiBd/Lp8ZpzQJSGlFKUaBVL7WgWR0CzShpIH1OCdX2UKGgGaAloD0MI1IGsp1YFb0CUhpRSlGgVS8VoFkdAs0oij3225XV9lChoBmgJaA9DCENWt3pOVG5AlIaUUpRoFUu6aBZHQLNKNhL5AQh1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
79 |
"_n_updates": 620,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.9,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea94298b9ac592a6e07de9761ef1fbbf75bbe78daafe6e4f8478ec11f43d8800
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af28bd1db02e256c11c9e0a697377f1a394b03a26d0f49592dfe9f4c17361aa8
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 279.407918692366, "std_reward": 14.480587047132099, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T20:45:20.885591"}
|