FabioDataGeek commited on
Commit
78edf70
·
1 Parent(s): 92c3e4b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 286.48 +/- 14.70
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 284.13 +/- 19.83
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ffa92667160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ffa926671f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ffa92667280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ffa92667310>", "_build": "<function ActorCriticPolicy._build at 0x7ffa926673a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ffa92667430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ffa926674c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ffa92667550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ffa926675e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ffa92667670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ffa92667700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ffa92662600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673353976795065068, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADAcjpLX+E9mhabPS8Txr5b8aC824DyPAAAAAAAAAAAYCxrPik6LTu7RNO7udqduJLq0jzSzqy5AAAAAAAAAAD6aSe+2dGjPxKmyb5vYx+/8vJyvkDQ770AAAAAAAAAADOLb724h4w833e0PoDDnL7vvAg+EqafPAAAAAAAAAAAgG02P469iL61gN89xDZsvCckSr7pIBk0AACAPwAAAABm9L08jwICuv9exDhmobIzZdIkO5Vw67cAAIA/AACAP2ZMeTzhfJi6lerHuVdMt7R7tJ83JivnOAAAgD8AAIA/Gm70vbPUKz97/VK9va4Iv6Y2JL5eN4U8AAAAAAAAAAAz4ww8bjuIvH6wkzw7/T88TlsevDv1wLsAAIA/AACAP5px7Duv1Yw+umPHPXU/vb61nC28DkOMPAAAAAAAAAAAmummuzEwCj6Szpa9APbCvleRAr59eey8AAAAAAAAAAAGAB8+hKXJPnpW177fBgO/OZNNvStPib4AAAAAAAAAAKYBDL6APdo+bECCPvmky77WDoW8ZwGwPQAAAAAAAAAAQM2SPbjy2ruyFY27p8QdPUvLKT0klEq9AACAPwAAgD/NfJ07VwNPPwgFIb026BC/MOpUPRClY70AAAAAAAAAAABl8DzzHrU/vlcSP0fRibwkGIq8c30CPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrOP4odIEckCUhpRSlIwBbJRLtYwBdJRHQKAem6mO2iN1fZQoaAZoCWgPQwgJ+3YSEa9vQJSGlFKUaBVLwGgWR0CgHt2CuloEdX2UKGgGaAloD0MI61bPSS9ockCUhpRSlGgVS85oFkdAoB8UZccENnV9lChoBmgJaA9DCBBB1ejVNG9AlIaUUpRoFUvxaBZHQKAfGpUgjhV1fZQoaAZoCWgPQwjK372jhpZyQJSGlFKUaBVNMwNoFkdAoB8jxNIsiHV9lChoBmgJaA9DCFuxv+xeAnNAlIaUUpRoFUvMaBZHQKAfVv+fh/B1fZQoaAZoCWgPQwgvUigLH8RyQJSGlFKUaBVL7mgWR0CgH27T2FnJdX2UKGgGaAloD0MIEyujkU+6cUCUhpRSlGgVS8RoFkdAoB9u4Vh1DHV9lChoBmgJaA9DCIcVbvkIiXJAlIaUUpRoFUvJaBZHQKAfia1kUbl1fZQoaAZoCWgPQwhvYkhO5lNyQJSGlFKUaBVNEgFoFkdAoB/P+4smOXV9lChoBmgJaA9DCE4On3RiHnBAlIaUUpRoFUvAaBZHQKAf3jzZpSJ1fZQoaAZoCWgPQwj+utOdJ/RyQJSGlFKUaBVL4GgWR0CgH99q+JxedX2UKGgGaAloD0MI78ftl0+YcUCUhpRSlGgVS/1oFkdAoCArfNzKcXV9lChoBmgJaA9DCL05XKu9LW9AlIaUUpRoFUvIaBZHQKAgdcj7hvR1fZQoaAZoCWgPQwghy4KJfzdxQJSGlFKUaBVLxGgWR0CgIIr3sXzldX2UKGgGaAloD0MIg9vawnMxcUCUhpRSlGgVS+xoFkdAoCCNuHerMnV9lChoBmgJaA9DCFW+ZySC53BAlIaUUpRoFUv2aBZHQKAg8ARTS9d1fZQoaAZoCWgPQwgM5xpmaPJxQJSGlFKUaBVL2WgWR0CgIP2LxZuAdX2UKGgGaAloD0MI5zqNtBT2cUCUhpRSlGgVS8BoFkdAoCEDSPU8WHV9lChoBmgJaA9DCEop6PaSB3JAlIaUUpRoFUvHaBZHQKAhBkuHvc91fZQoaAZoCWgPQwgPlxx3ShBxQJSGlFKUaBVL0GgWR0CgISPllsgudX2UKGgGaAloD0MIQQ5KmKlVcUCUhpRSlGgVS8poFkdAoCFQhQm/nHV9lChoBmgJaA9DCKG5TiNtP3JAlIaUUpRoFUvJaBZHQKAhZk0aZQZ1fZQoaAZoCWgPQwhkk/yIXwtxQJSGlFKUaBVLxmgWR0CgIXsIeHSGdX2UKGgGaAloD0MIQIaOHVQ6c0CUhpRSlGgVS7JoFkdAoCGLdJrckHV9lChoBmgJaA9DCG9m9KOhOnJAlIaUUpRoFUvzaBZHQKBPZ3os7Mh1fZQoaAZoCWgPQwgewvhpnPNyQJSGlFKUaBVLz2gWR0CgT3vYWcjJdX2UKGgGaAloD0MIRwN4C+Q5cECUhpRSlGgVS89oFkdAoE98+cH4XXV9lChoBmgJaA9DCIjVH2EYX3BAlIaUUpRoFUu8aBZHQKBPm03wTdt1fZQoaAZoCWgPQwjzyB8MPCtyQJSGlFKUaBVLzGgWR0CgT/3NC7btdX2UKGgGaAloD0MIw0SDFLwJc0CUhpRSlGgVS8hoFkdAoFAJuMuOCHV9lChoBmgJaA9DCAn84ef/rXFAlIaUUpRoFUvVaBZHQKBQJs/IKdB1fZQoaAZoCWgPQwipS8Yx0ntxQJSGlFKUaBVLwWgWR0CgUGbWuoxYdX2UKGgGaAloD0MIoZ+p1y3bcECUhpRSlGgVS9ZoFkdAoFCccsDnvHV9lChoBmgJaA9DCFa7JqS1A3RAlIaUUpRoFUvkaBZHQKBQtMRHww11fZQoaAZoCWgPQwjW/PhLi+5wQJSGlFKUaBVL32gWR0CgULzByjpLdX2UKGgGaAloD0MI/DVZo96GcECUhpRSlGgVS8hoFkdAoFDMmplz2nV9lChoBmgJaA9DCONve4KEqXJAlIaUUpRoFUvBaBZHQKBQ0aLn9vV1fZQoaAZoCWgPQwh1yw7xD65tQJSGlFKUaBVL32gWR0CgUNik43m3dX2UKGgGaAloD0MIrpy9MxqmcUCUhpRSlGgVS7xoFkdAoFDa3NLUTnV9lChoBmgJaA9DCOusFtijIHFAlIaUUpRoFUviaBZHQKBRQpH7P6d1fZQoaAZoCWgPQwhkkSbeAUByQJSGlFKUaBVL0mgWR0CgUVt/FzdUdX2UKGgGaAloD0MIM2yU9VvRc0CUhpRSlGgVS81oFkdAoFFlC9h7V3V9lChoBmgJaA9DCHOgh9p20HNAlIaUUpRoFUviaBZHQKBRl6AOJ+F1fZQoaAZoCWgPQwinBMQkXJ1xQJSGlFKUaBVLwGgWR0CgUdNA1NxmdX2UKGgGaAloD0MIBkoKLIBKckCUhpRSlGgVS9NoFkdAoFIQB/7SA3V9lChoBmgJaA9DCAItXcF2Y3BAlIaUUpRoFU0KAWgWR0CgUh2iDdxidX2UKGgGaAloD0MI203wTVNWcUCUhpRSlGgVS7RoFkdAoFIlM9KVZHV9lChoBmgJaA9DCEhRZ+6h3HFAlIaUUpRoFUvSaBZHQKBSLBVMmF91fZQoaAZoCWgPQwiU2SCTzFFyQJSGlFKUaBVLyGgWR0CgUoJ+lTFVdX2UKGgGaAloD0MI+1qXGqEfcECUhpRSlGgVS8VoFkdAoFKVNlAeJnV9lChoBmgJaA9DCPd0dcdiw3BAlIaUUpRoFUvFaBZHQKBStN8ma6V1fZQoaAZoCWgPQwi3Yn/ZPSlzQJSGlFKUaBVLxWgWR0CgUr6qbSZ0dX2UKGgGaAloD0MIYW9iSE5AckCUhpRSlGgVS9poFkdAoFLT/lyR0XV9lChoBmgJaA9DCOHRxhGrgnFAlIaUUpRoFUvlaBZHQKBS+u3+dbx1fZQoaAZoCWgPQwgQBMjQMctwQJSGlFKUaBVLuGgWR0CgUysefZmJdX2UKGgGaAloD0MIk6mCUckgckCUhpRSlGgVS8hoFkdAoFMwWac7Q3V9lChoBmgJaA9DCLB1qRG62nNAlIaUUpRoFUvBaBZHQKBTNsiSq2l1fZQoaAZoCWgPQwhY5q26DutzQJSGlFKUaBVL+mgWR0CgUzjIq9XcdX2UKGgGaAloD0MIoRLXMa74bkCUhpRSlGgVS9VoFkdAoFOeepXIVHV9lChoBmgJaA9DCA0a+id4oXFAlIaUUpRoFUvDaBZHQKBTr1tfoid1fZQoaAZoCWgPQwgL7DGR0ipLQJSGlFKUaBVLeGgWR0CgU7XqAz55dX2UKGgGaAloD0MI+kFdpBBGckCUhpRSlGgVS7ZoFkdAoFPJxaPjn3V9lChoBmgJaA9DCFipoKLqLnNAlIaUUpRoFUu2aBZHQKBT4zgMtsh1fZQoaAZoCWgPQwgANiBCnANzQJSGlFKUaBVLxGgWR0CgU/QrtmcwdX2UKGgGaAloD0MI8UqS5/p8b0CUhpRSlGgVS8NoFkdAoFP5myxA0XV9lChoBmgJaA9DCE1oklhS9nJAlIaUUpRoFUu4aBZHQKBUNDXOGCZ1fZQoaAZoCWgPQwi0BBkBVYdxQJSGlFKUaBVLrGgWR0CgVF8biqACdX2UKGgGaAloD0MI2SPUDOlCc0CUhpRSlGgVS9doFkdAoFSyCQLeAXV9lChoBmgJaA9DCBjPoKF/oW9AlIaUUpRoFUvFaBZHQKBU0iVSn+B1fZQoaAZoCWgPQwjGounsJEFxQJSGlFKUaBVL7mgWR0CgVPocinpCdX2UKGgGaAloD0MIw0gvavf0cUCUhpRSlGgVS8FoFkdAoFUCl7+kxnV9lChoBmgJaA9DCBEZVvEGanNAlIaUUpRoFUvmaBZHQKBVVhz/6wd1fZQoaAZoCWgPQwi0zCIUW6tvQJSGlFKUaBVLwGgWR0CgVYZAIIGAdX2UKGgGaAloD0MIipC6nT2QckCUhpRSlGgVS/9oFkdAoFWpowmE5HV9lChoBmgJaA9DCNBDbRuGuHFAlIaUUpRoFUuwaBZHQKBVs6PsAvN1fZQoaAZoCWgPQwheS8gH/eFxQJSGlFKUaBVL0WgWR0CgVbu6d1+zdX2UKGgGaAloD0MInpYfuMoocECUhpRSlGgVS9JoFkdAoFXSrJbMYHV9lChoBmgJaA9DCIZ2TrMAvHFAlIaUUpRoFUvcaBZHQKBWG8GLUCt1fZQoaAZoCWgPQwgboDTUaB5zQJSGlFKUaBVNAwFoFkdAoFYhoAXEZXV9lChoBmgJaA9DCJ86Vik9+3FAlIaUUpRoFUvBaBZHQKBWJBRAKOV1fZQoaAZoCWgPQwhoQpPEkiNyQJSGlFKUaBVLuGgWR0CgVjneJpFkdX2UKGgGaAloD0MI323eOOmnckCUhpRSlGgVS85oFkdAoFbASteUp3V9lChoBmgJaA9DCGZpp+ZyGnNAlIaUUpRoFUu7aBZHQKBW1MibDuV1fZQoaAZoCWgPQwhsIchBibVwQJSGlFKUaBVLymgWR0CgVwVAqur7dX2UKGgGaAloD0MIlumXiDcWcUCUhpRSlGgVS+loFkdAoFcox8D0UXV9lChoBmgJaA9DCKYmwRvS53JAlIaUUpRoFUvFaBZHQKBXWIqslsx1fZQoaAZoCWgPQwh96IL61mZwQJSGlFKUaBVLxGgWR0CgV6vZIxxldX2UKGgGaAloD0MIUaIljyf+cECUhpRSlGgVS8BoFkdAoFe0dRzij3V9lChoBmgJaA9DCAkZyLNLV3FAlIaUUpRoFUvWaBZHQKBXu8cuJ1t1fZQoaAZoCWgPQwj/5sWJbyZxQJSGlFKUaBVLzGgWR0CgV+6DXe3ydX2UKGgGaAloD0MIkBK7tnfMc0CUhpRSlGgVS+5oFkdAoFgrt5UtI3V9lChoBmgJaA9DCMcPlUaMi3FAlIaUUpRoFUu6aBZHQKBYMeJ53Tx1fZQoaAZoCWgPQwjiy0QRkm9zQJSGlFKUaBVLyWgWR0CgWD8tPHktdX2UKGgGaAloD0MIUtZvJiYXcECUhpRSlGgVS8poFkdAoFg8p9ZzP3V9lChoBmgJaA9DCMtmDkktx25AlIaUUpRoFUvQaBZHQKBYU7lJYkp1fZQoaAZoCWgPQwiXdf9YSJBxQJSGlFKUaBVLv2gWR0CgWOTYVZcLdX2UKGgGaAloD0MIyH2rdWLqbUCUhpRSlGgVS81oFkdAoFj393r2QHV9lChoBmgJaA9DCNC0xMpoW3JAlIaUUpRoFUu8aBZHQKBZEVVxS511fZQoaAZoCWgPQwiyhLUx9ihzQJSGlFKUaBVL0WgWR0CgWXRJul41dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83c78d3790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83c78d3820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83c78d38b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83c78d3940>", "_build": "<function ActorCriticPolicy._build at 0x7f83c78d39d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f83c78d3a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83c78d3af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83c78d3b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83c78d3c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83c78d3ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83c78d3d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83c78d3dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83c78d04b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673378628405608561, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0KwLxXw7U/isKGvrH8Lr3dW9a8TNAvvgAAAAAAAAAAzVUoPY9aE7o16ug6ZivqNLkHoLtNoAe6AAAAAAAAgD9mf8G8bra2P7P1d74a6s68OQTxvNWbCL4AAAAAAAAAAFp0jj1IDYa6UkOtvUNZjbaUCDA7Vn//NQAAAAAAAIA/AAzIu2xCuLu3tIw73G+KPISkDL26L2s9AACAPwAAgD9mKqM8j65hukv0WLjGWiGz7/VbOkjFfTcAAIA/AACAPyatNL6jBBA/m1LXPl45I79vJHK9jouUPgAAAAAAAAAAgNImPXG5VTogafC9OdFzvs+Ghr2n/cM+AACAPwAAAADNr3+9Cic0PhP0jj7/CwK/CE7jPSlKJj4AAAAAAAAAAICwE74AQLY/J7EQv4Fkir5PwXG+jS7SvgAAAAAAAAAA836aPRGfPT8ceAk+nHFgv9InBz5q5No9AAAAAAAAAAAaigM9z8wqvMMTj76aHdY8y2qAPbszz70AAIA/AACAP3ryML5vYfg+qL6lPqe3HL9ju1e9csJPPgAAAAAAAAAAzaBOvDyWeT3z+4g84ie5vt/KsjyYFek8AAAAAAAAAACzODk9YdbUPd0+HL5/qbe+knNCPf5qNr0AAAAAAAAAALNGRb2OvWQ/CmQyvW3tNL91y9u9IVUuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMGKfAErKcUCUhpRSlIwBbJRLwowBdJRHQJ9/jyGzru91fZQoaAZoCWgPQwh2+6wy02FvQJSGlFKUaBVLqWgWR0Cff8e8PFvRdX2UKGgGaAloD0MIgxPRr+3ocUCUhpRSlGgVTTYBaBZHQJ9/1DgIhQp1fZQoaAZoCWgPQwi9UStM34tzQJSGlFKUaBVL6GgWR0CfgA8/D+BIdX2UKGgGaAloD0MIfc7drhebcECUhpRSlGgVS7loFkdAn4BC1eBxxXV9lChoBmgJaA9DCJRt4A4Uu3BAlIaUUpRoFUvMaBZHQJ+Aat0V8Cx1fZQoaAZoCWgPQwiIoGr0KnFzQJSGlFKUaBVL4WgWR0CfgHiQDFIedX2UKGgGaAloD0MIy0i9p/JocUCUhpRSlGgVS6ZoFkdAn4ENnTRYzXV9lChoBmgJaA9DCDoktVAyolJAlIaUUpRoFUtmaBZHQJ+BaNcW0qp1fZQoaAZoCWgPQwh80/TZQXVwQJSGlFKUaBVLomgWR0CfgXVBlcyFdX2UKGgGaAloD0MIMzZ0s7+1cUCUhpRSlGgVS75oFkdAn4ITZcs19HV9lChoBmgJaA9DCGPVIMxtNXJAlIaUUpRoFUvFaBZHQJ+CI2hqTKV1fZQoaAZoCWgPQwgQdopVQyNxQJSGlFKUaBVLwWgWR0CfgxKZ2IO6dX2UKGgGaAloD0MIVvSHZp7hc0CUhpRSlGgVS9JoFkdAn4MaWkadc3V9lChoBmgJaA9DCHi13JmJxHJAlIaUUpRoFUveaBZHQJ/gOl41P311fZQoaAZoCWgPQwg4L058NcNyQJSGlFKUaBVLxGgWR0Cf4HPszEaVdX2UKGgGaAloD0MIRBZp4l0Mc0CUhpRSlGgVS7toFkdAn+CIkE9t/HV9lChoBmgJaA9DCNJSeTvCAnFAlIaUUpRoFUvCaBZHQJ/goK2KEWZ1fZQoaAZoCWgPQwhbKJmc2mlzQJSGlFKUaBVLrWgWR0Cf4KSyMUAUdX2UKGgGaAloD0MIlIPZBFi4cECUhpRSlGgVS6RoFkdAn+CnUH6dlXV9lChoBmgJaA9DCI5aYfqe6nJAlIaUUpRoFUu0aBZHQJ/g46q814x1fZQoaAZoCWgPQwiJDKt4Y5lxQJSGlFKUaBVLyWgWR0Cf4Py+6Ae8dX2UKGgGaAloD0MI7pQO1r9HcUCUhpRSlGgVS6FoFkdAn+EaC17Y03V9lChoBmgJaA9DCMbbSq+NBXJAlIaUUpRoFUuYaBZHQJ/hN9PUKAt1fZQoaAZoCWgPQwiMSuoEtGxxQJSGlFKUaBVLnmgWR0Cf4eRG+bmVdX2UKGgGaAloD0MIyjZwB+oSaECUhpRSlGgVTegDaBZHQJ/iI4ffXPJ1fZQoaAZoCWgPQwiGyVTB6IxzQJSGlFKUaBVLymgWR0Cf4i/SH/LldX2UKGgGaAloD0MIoHB2a9nrcUCUhpRSlGgVS6loFkdAn+IvDtPYWnV9lChoBmgJaA9DCHgq4J7nLlRAlIaUUpRoFUt1aBZHQJ/ileu3c591fZQoaAZoCWgPQwiyZmSQu+FxQJSGlFKUaBVLlmgWR0Cf4qtMfzSUdX2UKGgGaAloD0MIzY+/tKhzckCUhpRSlGgVS7loFkdAn+NGkadc0XV9lChoBmgJaA9DCPwdigJ9bHBAlIaUUpRoFUukaBZHQJ/joNb1RLt1fZQoaAZoCWgPQwinXOFdrkRzQJSGlFKUaBVLxGgWR0Cf4+JVbRnfdX2UKGgGaAloD0MIotPzbiz7cECUhpRSlGgVS7poFkdAn+QJnlGPP3V9lChoBmgJaA9DCCEHJcx0jHBAlIaUUpRoFUu8aBZHQJ/kFq9Gqgh1fZQoaAZoCWgPQwjiW1g3HrxwQJSGlFKUaBVLwWgWR0Cf5BUhFEy+dX2UKGgGaAloD0MIL7/TZAabcUCUhpRSlGgVS7doFkdAn+Q/kJa7mXV9lChoBmgJaA9DCMDOTZsxC3NAlIaUUpRoFUu4aBZHQJ/kXZ/Tb351fZQoaAZoCWgPQwhihzHp7zlzQJSGlFKUaBVLu2gWR0Cf5JNxlxwRdX2UKGgGaAloD0MIU5W2uMbdc0CUhpRSlGgVS7loFkdAn+SmsA/9pHV9lChoBmgJaA9DCAcmN4os8HNAlIaUUpRoFUu4aBZHQJ/lSMLncL11fZQoaAZoCWgPQwhqaAOwwfhxQJSGlFKUaBVLrGgWR0Cf5Ui+tbLVdX2UKGgGaAloD0MIUvLqHIMSc0CUhpRSlGgVS7loFkdAn+WOWfK6nXV9lChoBmgJaA9DCI7onnVNpXJAlIaUUpRoFUvVaBZHQJ/mGHXVbzN1fZQoaAZoCWgPQwhQOLu1TOBwQJSGlFKUaBVLwWgWR0Cf5iY8Md92dX2UKGgGaAloD0MIVcA9z58/c0CUhpRSlGgVS8VoFkdAn+ZNUGVzIXV9lChoBmgJaA9DCJt2Mc30AHJAlIaUUpRoFUuvaBZHQJ/mg9A5aNd1fZQoaAZoCWgPQwg6sYf2scpwQJSGlFKUaBVLwGgWR0Cf5y0lZ5iWdX2UKGgGaAloD0MIbhYvFoa5cUCUhpRSlGgVS7hoFkdAn+dqBVdX1nV9lChoBmgJaA9DCMlaQ6l9HXJAlIaUUpRoFUu8aBZHQJ/nh7KJVKh1fZQoaAZoCWgPQwiiKTv9oHxyQJSGlFKUaBVLvWgWR0Cf548ohIOIdX2UKGgGaAloD0MICHdn7TajckCUhpRSlGgVS61oFkdAn+e7A57w8XV9lChoBmgJaA9DCL4z2qok5EpAlIaUUpRoFUuHaBZHQJ/nyLUCq6x1fZQoaAZoCWgPQwi8kA4P4YVyQJSGlFKUaBVLymgWR0Cf6BKujh1ldX2UKGgGaAloD0MIf6Dctq8dc0CUhpRSlGgVS+doFkdAn+gfYnOSn3V9lChoBmgJaA9DCGo0uRhD9nNAlIaUUpRoFUvVaBZHQJ/oJm4Ajpt1fZQoaAZoCWgPQwj8j0yHjgtyQJSGlFKUaBVLxmgWR0Cf6D/h2nsLdX2UKGgGaAloD0MIB+5AnXI5c0CUhpRSlGgVS7FoFkdAn+jHwXqJM3V9lChoBmgJaA9DCC0+BcB4om9AlIaUUpRoFUuuaBZHQJ/pvhLoOhF1fZQoaAZoCWgPQwgou5nRj9BxQJSGlFKUaBVLzGgWR0Cf6fOC5EtvdX2UKGgGaAloD0MIlZ9U+3QNcUCUhpRSlGgVS9JoFkdAn+pGecx0uHV9lChoBmgJaA9DCIv/O6LCSHFAlIaUUpRoFUulaBZHQJ/qUkgOjIt1fZQoaAZoCWgPQwh41QPmIShxQJSGlFKUaBVL9mgWR0Cf6sRoAXEZdX2UKGgGaAloD0MIgCvZsVEpckCUhpRSlGgVTSwBaBZHQJ/q+iCaqjt1fZQoaAZoCWgPQwgcl3FTw9RyQJSGlFKUaBVLu2gWR0Cf6wRTjvNNdX2UKGgGaAloD0MIAb7bvHFvckCUhpRSlGgVS7VoFkdAn+sGGqPwNXV9lChoBmgJaA9DCCDT2jR2CXBAlIaUUpRoFUu9aBZHQJ/rzxkNF0B1fZQoaAZoCWgPQwh9IHnnkNtyQJSGlFKUaBVL4GgWR0Cf6+FUADJVdX2UKGgGaAloD0MIs+4fC9F/c0CUhpRSlGgVS9ZoFkdAn+w/47A+IXV9lChoBmgJaA9DCLBW7ZpQC3NAlIaUUpRoFUvuaBZHQJ/sWofjjrB1fZQoaAZoCWgPQwgHYAMixERQQJSGlFKUaBVLhmgWR0Cf7HCmuTzNdX2UKGgGaAloD0MIYi0+BYD+cUCUhpRSlGgVS/FoFkdAn+x5pztCzHV9lChoBmgJaA9DCPfN/dVjCHNAlIaUUpRoFUvdaBZHQJ/smaWom5V1fZQoaAZoCWgPQwg5nPnVXMRzQJSGlFKUaBVL+WgWR0Cf7QaufVZtdX2UKGgGaAloD0MI/pqsUc+UcUCUhpRSlGgVS9VoFkdAn+0JtSAH3XV9lChoBmgJaA9DCNCdYP91E29AlIaUUpRoFUvJaBZHQJ/t28Hv+fh1fZQoaAZoCWgPQwiKdD+noMpxQJSGlFKUaBVLvGgWR0Cf7eUDdP+GdX2UKGgGaAloD0MI8E4+PTbicECUhpRSlGgVS6NoFkdAn+4jSG8Em3V9lChoBmgJaA9DCPeTMT5MMHJAlIaUUpRoFUu7aBZHQJ/uWKekHlh1fZQoaAZoCWgPQwgtXiwM0YdyQJSGlFKUaBVL3GgWR0Cf7opsXSBtdX2UKGgGaAloD0MIiL1QwDYicUCUhpRSlGgVS5VoFkdAn+6iIgvDg3V9lChoBmgJaA9DCJoJhnONyHJAlIaUUpRoFUvQaBZHQJ/u7XRPXTV1fZQoaAZoCWgPQwjgLvt1Z0NxQJSGlFKUaBVLyGgWR0Cf76hKDkELdX2UKGgGaAloD0MINLqD2BnzcUCUhpRSlGgVS7JoFkdAn+/GxY7q6nV9lChoBmgJaA9DCNS19j6VJHJAlIaUUpRoFUu3aBZHQJ/v6FRHf/F1fZQoaAZoCWgPQwgsRfKVwJZzQJSGlFKUaBVLz2gWR0Cf8CogV45cdX2UKGgGaAloD0MI1SZO7rduc0CUhpRSlGgVS8JoFkdAn/BAAp8WsXV9lChoBmgJaA9DCMb9R6bDbXFAlIaUUpRoFUvSaBZHQJ/xEe6qbSZ1fZQoaAZoCWgPQwhuwVJdAJRxQJSGlFKUaBVL1mgWR0Cf8SP/JeVtdX2UKGgGaAloD0MIkMAffr42c0CUhpRSlGgVS7doFkdAn/F3WFvhqHV9lChoBmgJaA9DCGr7V1aa43FAlIaUUpRoFUu2aBZHQJ/xfBP9DQZ1fZQoaAZoCWgPQwibkUHuYvBxQJSGlFKUaBVLtGgWR0Cf8a+AEt/XdX2UKGgGaAloD0MIqKYk6zAsckCUhpRSlGgVS55oFkdAn/HHvttygnV9lChoBmgJaA9DCCkjLgDNiHJAlIaUUpRoFUukaBZHQJ/xzPnjhk11fZQoaAZoCWgPQwj4+e/BKztyQJSGlFKUaBVLsmgWR0Cf8dxyGSIQdX2UKGgGaAloD0MIO29js+PNcECUhpRSlGgVS5loFkdAn/MD5GjKxXV9lChoBmgJaA9DCCulZ3qJ73BAlIaUUpRoFUvQaBZHQJ/zGIYWLxZ1fZQoaAZoCWgPQwjD1QEQd7hwQJSGlFKUaBVNZQFoFkdAn/NUHD766HV9lChoBmgJaA9DCASqfxAJeXBAlIaUUpRoFUvDaBZHQJ/zm0ngHeJ1fZQoaAZoCWgPQwjNH9Pa9ExyQJSGlFKUaBVLq2gWR0Cf86JAdGRWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bfa8d2759910505d9e71dfd79dd46743cbacd08e7115863a526b47aeb373350b
3
- size 147091
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06bed182917c2015b9d4298f878f08a9e9b3c76a565e8783fe1369b4bc15aec7
3
+ size 147296
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.2
 
1
+ 1.7.0
ppo-LunarLander-v2/data CHANGED
@@ -3,20 +3,21 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7ffa92667160>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ffa926671f0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ffa92667280>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ffa92667310>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7ffa926673a0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7ffa92667430>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ffa926674c0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7ffa92667550>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ffa926675e0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ffa92667670>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ffa92667700>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7ffa92662600>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,16 +48,16 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1673353976795065068,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADAcjpLX+E9mhabPS8Txr5b8aC824DyPAAAAAAAAAAAYCxrPik6LTu7RNO7udqduJLq0jzSzqy5AAAAAAAAAAD6aSe+2dGjPxKmyb5vYx+/8vJyvkDQ770AAAAAAAAAADOLb724h4w833e0PoDDnL7vvAg+EqafPAAAAAAAAAAAgG02P469iL61gN89xDZsvCckSr7pIBk0AACAPwAAAABm9L08jwICuv9exDhmobIzZdIkO5Vw67cAAIA/AACAP2ZMeTzhfJi6lerHuVdMt7R7tJ83JivnOAAAgD8AAIA/Gm70vbPUKz97/VK9va4Iv6Y2JL5eN4U8AAAAAAAAAAAz4ww8bjuIvH6wkzw7/T88TlsevDv1wLsAAIA/AACAP5px7Duv1Yw+umPHPXU/vb61nC28DkOMPAAAAAAAAAAAmummuzEwCj6Szpa9APbCvleRAr59eey8AAAAAAAAAAAGAB8+hKXJPnpW177fBgO/OZNNvStPib4AAAAAAAAAAKYBDL6APdo+bECCPvmky77WDoW8ZwGwPQAAAAAAAAAAQM2SPbjy2ruyFY27p8QdPUvLKT0klEq9AACAPwAAgD/NfJ07VwNPPwgFIb026BC/MOpUPRClY70AAAAAAAAAAABl8DzzHrU/vlcSP0fRibwkGIq8c30CPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,7 +70,7 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrOP4odIEckCUhpRSlIwBbJRLtYwBdJRHQKAem6mO2iN1fZQoaAZoCWgPQwgJ+3YSEa9vQJSGlFKUaBVLwGgWR0CgHt2CuloEdX2UKGgGaAloD0MI61bPSS9ockCUhpRSlGgVS85oFkdAoB8UZccENnV9lChoBmgJaA9DCBBB1ejVNG9AlIaUUpRoFUvxaBZHQKAfGpUgjhV1fZQoaAZoCWgPQwjK372jhpZyQJSGlFKUaBVNMwNoFkdAoB8jxNIsiHV9lChoBmgJaA9DCFuxv+xeAnNAlIaUUpRoFUvMaBZHQKAfVv+fh/B1fZQoaAZoCWgPQwgvUigLH8RyQJSGlFKUaBVL7mgWR0CgH27T2FnJdX2UKGgGaAloD0MIEyujkU+6cUCUhpRSlGgVS8RoFkdAoB9u4Vh1DHV9lChoBmgJaA9DCIcVbvkIiXJAlIaUUpRoFUvJaBZHQKAfia1kUbl1fZQoaAZoCWgPQwhvYkhO5lNyQJSGlFKUaBVNEgFoFkdAoB/P+4smOXV9lChoBmgJaA9DCE4On3RiHnBAlIaUUpRoFUvAaBZHQKAf3jzZpSJ1fZQoaAZoCWgPQwj+utOdJ/RyQJSGlFKUaBVL4GgWR0CgH99q+JxedX2UKGgGaAloD0MI78ftl0+YcUCUhpRSlGgVS/1oFkdAoCArfNzKcXV9lChoBmgJaA9DCL05XKu9LW9AlIaUUpRoFUvIaBZHQKAgdcj7hvR1fZQoaAZoCWgPQwghy4KJfzdxQJSGlFKUaBVLxGgWR0CgIIr3sXzldX2UKGgGaAloD0MIg9vawnMxcUCUhpRSlGgVS+xoFkdAoCCNuHerMnV9lChoBmgJaA9DCFW+ZySC53BAlIaUUpRoFUv2aBZHQKAg8ARTS9d1fZQoaAZoCWgPQwgM5xpmaPJxQJSGlFKUaBVL2WgWR0CgIP2LxZuAdX2UKGgGaAloD0MI5zqNtBT2cUCUhpRSlGgVS8BoFkdAoCEDSPU8WHV9lChoBmgJaA9DCEop6PaSB3JAlIaUUpRoFUvHaBZHQKAhBkuHvc91fZQoaAZoCWgPQwgPlxx3ShBxQJSGlFKUaBVL0GgWR0CgISPllsgudX2UKGgGaAloD0MIQQ5KmKlVcUCUhpRSlGgVS8poFkdAoCFQhQm/nHV9lChoBmgJaA9DCKG5TiNtP3JAlIaUUpRoFUvJaBZHQKAhZk0aZQZ1fZQoaAZoCWgPQwhkk/yIXwtxQJSGlFKUaBVLxmgWR0CgIXsIeHSGdX2UKGgGaAloD0MIQIaOHVQ6c0CUhpRSlGgVS7JoFkdAoCGLdJrckHV9lChoBmgJaA9DCG9m9KOhOnJAlIaUUpRoFUvzaBZHQKBPZ3os7Mh1fZQoaAZoCWgPQwgewvhpnPNyQJSGlFKUaBVLz2gWR0CgT3vYWcjJdX2UKGgGaAloD0MIRwN4C+Q5cECUhpRSlGgVS89oFkdAoE98+cH4XXV9lChoBmgJaA9DCIjVH2EYX3BAlIaUUpRoFUu8aBZHQKBPm03wTdt1fZQoaAZoCWgPQwjzyB8MPCtyQJSGlFKUaBVLzGgWR0CgT/3NC7btdX2UKGgGaAloD0MIw0SDFLwJc0CUhpRSlGgVS8hoFkdAoFAJuMuOCHV9lChoBmgJaA9DCAn84ef/rXFAlIaUUpRoFUvVaBZHQKBQJs/IKdB1fZQoaAZoCWgPQwipS8Yx0ntxQJSGlFKUaBVLwWgWR0CgUGbWuoxYdX2UKGgGaAloD0MIoZ+p1y3bcECUhpRSlGgVS9ZoFkdAoFCccsDnvHV9lChoBmgJaA9DCFa7JqS1A3RAlIaUUpRoFUvkaBZHQKBQtMRHww11fZQoaAZoCWgPQwjW/PhLi+5wQJSGlFKUaBVL32gWR0CgULzByjpLdX2UKGgGaAloD0MI/DVZo96GcECUhpRSlGgVS8hoFkdAoFDMmplz2nV9lChoBmgJaA9DCONve4KEqXJAlIaUUpRoFUvBaBZHQKBQ0aLn9vV1fZQoaAZoCWgPQwh1yw7xD65tQJSGlFKUaBVL32gWR0CgUNik43m3dX2UKGgGaAloD0MIrpy9MxqmcUCUhpRSlGgVS7xoFkdAoFDa3NLUTnV9lChoBmgJaA9DCOusFtijIHFAlIaUUpRoFUviaBZHQKBRQpH7P6d1fZQoaAZoCWgPQwhkkSbeAUByQJSGlFKUaBVL0mgWR0CgUVt/FzdUdX2UKGgGaAloD0MIM2yU9VvRc0CUhpRSlGgVS81oFkdAoFFlC9h7V3V9lChoBmgJaA9DCHOgh9p20HNAlIaUUpRoFUviaBZHQKBRl6AOJ+F1fZQoaAZoCWgPQwinBMQkXJ1xQJSGlFKUaBVLwGgWR0CgUdNA1NxmdX2UKGgGaAloD0MIBkoKLIBKckCUhpRSlGgVS9NoFkdAoFIQB/7SA3V9lChoBmgJaA9DCAItXcF2Y3BAlIaUUpRoFU0KAWgWR0CgUh2iDdxidX2UKGgGaAloD0MI203wTVNWcUCUhpRSlGgVS7RoFkdAoFIlM9KVZHV9lChoBmgJaA9DCEhRZ+6h3HFAlIaUUpRoFUvSaBZHQKBSLBVMmF91fZQoaAZoCWgPQwiU2SCTzFFyQJSGlFKUaBVLyGgWR0CgUoJ+lTFVdX2UKGgGaAloD0MI+1qXGqEfcECUhpRSlGgVS8VoFkdAoFKVNlAeJnV9lChoBmgJaA9DCPd0dcdiw3BAlIaUUpRoFUvFaBZHQKBStN8ma6V1fZQoaAZoCWgPQwi3Yn/ZPSlzQJSGlFKUaBVLxWgWR0CgUr6qbSZ0dX2UKGgGaAloD0MIYW9iSE5AckCUhpRSlGgVS9poFkdAoFLT/lyR0XV9lChoBmgJaA9DCOHRxhGrgnFAlIaUUpRoFUvlaBZHQKBS+u3+dbx1fZQoaAZoCWgPQwgQBMjQMctwQJSGlFKUaBVLuGgWR0CgUysefZmJdX2UKGgGaAloD0MIk6mCUckgckCUhpRSlGgVS8hoFkdAoFMwWac7Q3V9lChoBmgJaA9DCLB1qRG62nNAlIaUUpRoFUvBaBZHQKBTNsiSq2l1fZQoaAZoCWgPQwhY5q26DutzQJSGlFKUaBVL+mgWR0CgUzjIq9XcdX2UKGgGaAloD0MIoRLXMa74bkCUhpRSlGgVS9VoFkdAoFOeepXIVHV9lChoBmgJaA9DCA0a+id4oXFAlIaUUpRoFUvDaBZHQKBTr1tfoid1fZQoaAZoCWgPQwgL7DGR0ipLQJSGlFKUaBVLeGgWR0CgU7XqAz55dX2UKGgGaAloD0MI+kFdpBBGckCUhpRSlGgVS7ZoFkdAoFPJxaPjn3V9lChoBmgJaA9DCFipoKLqLnNAlIaUUpRoFUu2aBZHQKBT4zgMtsh1fZQoaAZoCWgPQwgANiBCnANzQJSGlFKUaBVLxGgWR0CgU/QrtmcwdX2UKGgGaAloD0MI8UqS5/p8b0CUhpRSlGgVS8NoFkdAoFP5myxA0XV9lChoBmgJaA9DCE1oklhS9nJAlIaUUpRoFUu4aBZHQKBUNDXOGCZ1fZQoaAZoCWgPQwi0BBkBVYdxQJSGlFKUaBVLrGgWR0CgVF8biqACdX2UKGgGaAloD0MI2SPUDOlCc0CUhpRSlGgVS9doFkdAoFSyCQLeAXV9lChoBmgJaA9DCBjPoKF/oW9AlIaUUpRoFUvFaBZHQKBU0iVSn+B1fZQoaAZoCWgPQwjGounsJEFxQJSGlFKUaBVL7mgWR0CgVPocinpCdX2UKGgGaAloD0MIw0gvavf0cUCUhpRSlGgVS8FoFkdAoFUCl7+kxnV9lChoBmgJaA9DCBEZVvEGanNAlIaUUpRoFUvmaBZHQKBVVhz/6wd1fZQoaAZoCWgPQwi0zCIUW6tvQJSGlFKUaBVLwGgWR0CgVYZAIIGAdX2UKGgGaAloD0MIipC6nT2QckCUhpRSlGgVS/9oFkdAoFWpowmE5HV9lChoBmgJaA9DCNBDbRuGuHFAlIaUUpRoFUuwaBZHQKBVs6PsAvN1fZQoaAZoCWgPQwheS8gH/eFxQJSGlFKUaBVL0WgWR0CgVbu6d1+zdX2UKGgGaAloD0MInpYfuMoocECUhpRSlGgVS9JoFkdAoFXSrJbMYHV9lChoBmgJaA9DCIZ2TrMAvHFAlIaUUpRoFUvcaBZHQKBWG8GLUCt1fZQoaAZoCWgPQwgboDTUaB5zQJSGlFKUaBVNAwFoFkdAoFYhoAXEZXV9lChoBmgJaA9DCJ86Vik9+3FAlIaUUpRoFUvBaBZHQKBWJBRAKOV1fZQoaAZoCWgPQwhoQpPEkiNyQJSGlFKUaBVLuGgWR0CgVjneJpFkdX2UKGgGaAloD0MI323eOOmnckCUhpRSlGgVS85oFkdAoFbASteUp3V9lChoBmgJaA9DCGZpp+ZyGnNAlIaUUpRoFUu7aBZHQKBW1MibDuV1fZQoaAZoCWgPQwhsIchBibVwQJSGlFKUaBVLymgWR0CgVwVAqur7dX2UKGgGaAloD0MIlumXiDcWcUCUhpRSlGgVS+loFkdAoFcox8D0UXV9lChoBmgJaA9DCKYmwRvS53JAlIaUUpRoFUvFaBZHQKBXWIqslsx1fZQoaAZoCWgPQwh96IL61mZwQJSGlFKUaBVLxGgWR0CgV6vZIxxldX2UKGgGaAloD0MIUaIljyf+cECUhpRSlGgVS8BoFkdAoFe0dRzij3V9lChoBmgJaA9DCAkZyLNLV3FAlIaUUpRoFUvWaBZHQKBXu8cuJ1t1fZQoaAZoCWgPQwj/5sWJbyZxQJSGlFKUaBVLzGgWR0CgV+6DXe3ydX2UKGgGaAloD0MIkBK7tnfMc0CUhpRSlGgVS+5oFkdAoFgrt5UtI3V9lChoBmgJaA9DCMcPlUaMi3FAlIaUUpRoFUu6aBZHQKBYMeJ53Tx1fZQoaAZoCWgPQwjiy0QRkm9zQJSGlFKUaBVLyWgWR0CgWD8tPHktdX2UKGgGaAloD0MIUtZvJiYXcECUhpRSlGgVS8poFkdAoFg8p9ZzP3V9lChoBmgJaA9DCMtmDkktx25AlIaUUpRoFUvQaBZHQKBYU7lJYkp1fZQoaAZoCWgPQwiXdf9YSJBxQJSGlFKUaBVLv2gWR0CgWOTYVZcLdX2UKGgGaAloD0MIyH2rdWLqbUCUhpRSlGgVS81oFkdAoFj393r2QHV9lChoBmgJaA9DCNC0xMpoW3JAlIaUUpRoFUu8aBZHQKBZEVVxS511fZQoaAZoCWgPQwiyhLUx9ihzQJSGlFKUaBVL0WgWR0CgWXRJul41dWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
@@ -79,14 +80,14 @@
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.95,
82
- "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 32,
86
  "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83c78d3790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83c78d3820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83c78d38b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83c78d3940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f83c78d39d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f83c78d3a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f83c78d3af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83c78d3b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f83c78d3c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83c78d3ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83c78d3d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83c78d3dc0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f83c78d04b0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1673378628405608561,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0KwLxXw7U/isKGvrH8Lr3dW9a8TNAvvgAAAAAAAAAAzVUoPY9aE7o16ug6ZivqNLkHoLtNoAe6AAAAAAAAgD9mf8G8bra2P7P1d74a6s68OQTxvNWbCL4AAAAAAAAAAFp0jj1IDYa6UkOtvUNZjbaUCDA7Vn//NQAAAAAAAIA/AAzIu2xCuLu3tIw73G+KPISkDL26L2s9AACAPwAAgD9mKqM8j65hukv0WLjGWiGz7/VbOkjFfTcAAIA/AACAPyatNL6jBBA/m1LXPl45I79vJHK9jouUPgAAAAAAAAAAgNImPXG5VTogafC9OdFzvs+Ghr2n/cM+AACAPwAAAADNr3+9Cic0PhP0jj7/CwK/CE7jPSlKJj4AAAAAAAAAAICwE74AQLY/J7EQv4Fkir5PwXG+jS7SvgAAAAAAAAAA836aPRGfPT8ceAk+nHFgv9InBz5q5No9AAAAAAAAAAAaigM9z8wqvMMTj76aHdY8y2qAPbszz70AAIA/AACAP3ryML5vYfg+qL6lPqe3HL9ju1e9csJPPgAAAAAAAAAAzaBOvDyWeT3z+4g84ie5vt/KsjyYFek8AAAAAAAAAACzODk9YdbUPd0+HL5/qbe+knNCPf5qNr0AAAAAAAAAALNGRb2OvWQ/CmQyvW3tNL91y9u9IVUuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMGKfAErKcUCUhpRSlIwBbJRLwowBdJRHQJ9/jyGzru91fZQoaAZoCWgPQwh2+6wy02FvQJSGlFKUaBVLqWgWR0Cff8e8PFvRdX2UKGgGaAloD0MIgxPRr+3ocUCUhpRSlGgVTTYBaBZHQJ9/1DgIhQp1fZQoaAZoCWgPQwi9UStM34tzQJSGlFKUaBVL6GgWR0CfgA8/D+BIdX2UKGgGaAloD0MIfc7drhebcECUhpRSlGgVS7loFkdAn4BC1eBxxXV9lChoBmgJaA9DCJRt4A4Uu3BAlIaUUpRoFUvMaBZHQJ+Aat0V8Cx1fZQoaAZoCWgPQwiIoGr0KnFzQJSGlFKUaBVL4WgWR0CfgHiQDFIedX2UKGgGaAloD0MIy0i9p/JocUCUhpRSlGgVS6ZoFkdAn4ENnTRYzXV9lChoBmgJaA9DCDoktVAyolJAlIaUUpRoFUtmaBZHQJ+BaNcW0qp1fZQoaAZoCWgPQwh80/TZQXVwQJSGlFKUaBVLomgWR0CfgXVBlcyFdX2UKGgGaAloD0MIMzZ0s7+1cUCUhpRSlGgVS75oFkdAn4ITZcs19HV9lChoBmgJaA9DCGPVIMxtNXJAlIaUUpRoFUvFaBZHQJ+CI2hqTKV1fZQoaAZoCWgPQwgQdopVQyNxQJSGlFKUaBVLwWgWR0CfgxKZ2IO6dX2UKGgGaAloD0MIVvSHZp7hc0CUhpRSlGgVS9JoFkdAn4MaWkadc3V9lChoBmgJaA9DCHi13JmJxHJAlIaUUpRoFUveaBZHQJ/gOl41P311fZQoaAZoCWgPQwg4L058NcNyQJSGlFKUaBVLxGgWR0Cf4HPszEaVdX2UKGgGaAloD0MIRBZp4l0Mc0CUhpRSlGgVS7toFkdAn+CIkE9t/HV9lChoBmgJaA9DCNJSeTvCAnFAlIaUUpRoFUvCaBZHQJ/goK2KEWZ1fZQoaAZoCWgPQwhbKJmc2mlzQJSGlFKUaBVLrWgWR0Cf4KSyMUAUdX2UKGgGaAloD0MIlIPZBFi4cECUhpRSlGgVS6RoFkdAn+CnUH6dlXV9lChoBmgJaA9DCI5aYfqe6nJAlIaUUpRoFUu0aBZHQJ/g46q814x1fZQoaAZoCWgPQwiJDKt4Y5lxQJSGlFKUaBVLyWgWR0Cf4Py+6Ae8dX2UKGgGaAloD0MI7pQO1r9HcUCUhpRSlGgVS6FoFkdAn+EaC17Y03V9lChoBmgJaA9DCMbbSq+NBXJAlIaUUpRoFUuYaBZHQJ/hN9PUKAt1fZQoaAZoCWgPQwiMSuoEtGxxQJSGlFKUaBVLnmgWR0Cf4eRG+bmVdX2UKGgGaAloD0MIyjZwB+oSaECUhpRSlGgVTegDaBZHQJ/iI4ffXPJ1fZQoaAZoCWgPQwiGyVTB6IxzQJSGlFKUaBVLymgWR0Cf4i/SH/LldX2UKGgGaAloD0MIoHB2a9nrcUCUhpRSlGgVS6loFkdAn+IvDtPYWnV9lChoBmgJaA9DCHgq4J7nLlRAlIaUUpRoFUt1aBZHQJ/ileu3c591fZQoaAZoCWgPQwiyZmSQu+FxQJSGlFKUaBVLlmgWR0Cf4qtMfzSUdX2UKGgGaAloD0MIzY+/tKhzckCUhpRSlGgVS7loFkdAn+NGkadc0XV9lChoBmgJaA9DCPwdigJ9bHBAlIaUUpRoFUukaBZHQJ/joNb1RLt1fZQoaAZoCWgPQwinXOFdrkRzQJSGlFKUaBVLxGgWR0Cf4+JVbRnfdX2UKGgGaAloD0MIotPzbiz7cECUhpRSlGgVS7poFkdAn+QJnlGPP3V9lChoBmgJaA9DCCEHJcx0jHBAlIaUUpRoFUu8aBZHQJ/kFq9Gqgh1fZQoaAZoCWgPQwjiW1g3HrxwQJSGlFKUaBVLwWgWR0Cf5BUhFEy+dX2UKGgGaAloD0MIL7/TZAabcUCUhpRSlGgVS7doFkdAn+Q/kJa7mXV9lChoBmgJaA9DCMDOTZsxC3NAlIaUUpRoFUu4aBZHQJ/kXZ/Tb351fZQoaAZoCWgPQwhihzHp7zlzQJSGlFKUaBVLu2gWR0Cf5JNxlxwRdX2UKGgGaAloD0MIU5W2uMbdc0CUhpRSlGgVS7loFkdAn+SmsA/9pHV9lChoBmgJaA9DCAcmN4os8HNAlIaUUpRoFUu4aBZHQJ/lSMLncL11fZQoaAZoCWgPQwhqaAOwwfhxQJSGlFKUaBVLrGgWR0Cf5Ui+tbLVdX2UKGgGaAloD0MIUvLqHIMSc0CUhpRSlGgVS7loFkdAn+WOWfK6nXV9lChoBmgJaA9DCI7onnVNpXJAlIaUUpRoFUvVaBZHQJ/mGHXVbzN1fZQoaAZoCWgPQwhQOLu1TOBwQJSGlFKUaBVLwWgWR0Cf5iY8Md92dX2UKGgGaAloD0MIVcA9z58/c0CUhpRSlGgVS8VoFkdAn+ZNUGVzIXV9lChoBmgJaA9DCJt2Mc30AHJAlIaUUpRoFUuvaBZHQJ/mg9A5aNd1fZQoaAZoCWgPQwg6sYf2scpwQJSGlFKUaBVLwGgWR0Cf5y0lZ5iWdX2UKGgGaAloD0MIbhYvFoa5cUCUhpRSlGgVS7hoFkdAn+dqBVdX1nV9lChoBmgJaA9DCMlaQ6l9HXJAlIaUUpRoFUu8aBZHQJ/nh7KJVKh1fZQoaAZoCWgPQwiiKTv9oHxyQJSGlFKUaBVLvWgWR0Cf548ohIOIdX2UKGgGaAloD0MICHdn7TajckCUhpRSlGgVS61oFkdAn+e7A57w8XV9lChoBmgJaA9DCL4z2qok5EpAlIaUUpRoFUuHaBZHQJ/nyLUCq6x1fZQoaAZoCWgPQwi8kA4P4YVyQJSGlFKUaBVLymgWR0Cf6BKujh1ldX2UKGgGaAloD0MIf6Dctq8dc0CUhpRSlGgVS+doFkdAn+gfYnOSn3V9lChoBmgJaA9DCGo0uRhD9nNAlIaUUpRoFUvVaBZHQJ/oJm4Ajpt1fZQoaAZoCWgPQwj8j0yHjgtyQJSGlFKUaBVLxmgWR0Cf6D/h2nsLdX2UKGgGaAloD0MIB+5AnXI5c0CUhpRSlGgVS7FoFkdAn+jHwXqJM3V9lChoBmgJaA9DCC0+BcB4om9AlIaUUpRoFUuuaBZHQJ/pvhLoOhF1fZQoaAZoCWgPQwgou5nRj9BxQJSGlFKUaBVLzGgWR0Cf6fOC5EtvdX2UKGgGaAloD0MIlZ9U+3QNcUCUhpRSlGgVS9JoFkdAn+pGecx0uHV9lChoBmgJaA9DCIv/O6LCSHFAlIaUUpRoFUulaBZHQJ/qUkgOjIt1fZQoaAZoCWgPQwh41QPmIShxQJSGlFKUaBVL9mgWR0Cf6sRoAXEZdX2UKGgGaAloD0MIgCvZsVEpckCUhpRSlGgVTSwBaBZHQJ/q+iCaqjt1fZQoaAZoCWgPQwgcl3FTw9RyQJSGlFKUaBVLu2gWR0Cf6wRTjvNNdX2UKGgGaAloD0MIAb7bvHFvckCUhpRSlGgVS7VoFkdAn+sGGqPwNXV9lChoBmgJaA9DCCDT2jR2CXBAlIaUUpRoFUu9aBZHQJ/rzxkNF0B1fZQoaAZoCWgPQwh9IHnnkNtyQJSGlFKUaBVL4GgWR0Cf6+FUADJVdX2UKGgGaAloD0MIs+4fC9F/c0CUhpRSlGgVS9ZoFkdAn+w/47A+IXV9lChoBmgJaA9DCLBW7ZpQC3NAlIaUUpRoFUvuaBZHQJ/sWofjjrB1fZQoaAZoCWgPQwgHYAMixERQQJSGlFKUaBVLhmgWR0Cf7HCmuTzNdX2UKGgGaAloD0MIYi0+BYD+cUCUhpRSlGgVS/FoFkdAn+x5pztCzHV9lChoBmgJaA9DCPfN/dVjCHNAlIaUUpRoFUvdaBZHQJ/smaWom5V1fZQoaAZoCWgPQwg5nPnVXMRzQJSGlFKUaBVL+WgWR0Cf7QaufVZtdX2UKGgGaAloD0MI/pqsUc+UcUCUhpRSlGgVS9VoFkdAn+0JtSAH3XV9lChoBmgJaA9DCNCdYP91E29AlIaUUpRoFUvJaBZHQJ/t28Hv+fh1fZQoaAZoCWgPQwiKdD+noMpxQJSGlFKUaBVLvGgWR0Cf7eUDdP+GdX2UKGgGaAloD0MI8E4+PTbicECUhpRSlGgVS6NoFkdAn+4jSG8Em3V9lChoBmgJaA9DCPeTMT5MMHJAlIaUUpRoFUu7aBZHQJ/uWKekHlh1fZQoaAZoCWgPQwgtXiwM0YdyQJSGlFKUaBVL3GgWR0Cf7opsXSBtdX2UKGgGaAloD0MIiL1QwDYicUCUhpRSlGgVS5VoFkdAn+6iIgvDg3V9lChoBmgJaA9DCJoJhnONyHJAlIaUUpRoFUvQaBZHQJ/u7XRPXTV1fZQoaAZoCWgPQwjgLvt1Z0NxQJSGlFKUaBVLyGgWR0Cf76hKDkELdX2UKGgGaAloD0MINLqD2BnzcUCUhpRSlGgVS7JoFkdAn+/GxY7q6nV9lChoBmgJaA9DCNS19j6VJHJAlIaUUpRoFUu3aBZHQJ/v6FRHf/F1fZQoaAZoCWgPQwgsRfKVwJZzQJSGlFKUaBVLz2gWR0Cf8CogV45cdX2UKGgGaAloD0MI1SZO7rduc0CUhpRSlGgVS8JoFkdAn/BAAp8WsXV9lChoBmgJaA9DCMb9R6bDbXFAlIaUUpRoFUvSaBZHQJ/xEe6qbSZ1fZQoaAZoCWgPQwhuwVJdAJRxQJSGlFKUaBVL1mgWR0Cf8SP/JeVtdX2UKGgGaAloD0MIkMAffr42c0CUhpRSlGgVS7doFkdAn/F3WFvhqHV9lChoBmgJaA9DCGr7V1aa43FAlIaUUpRoFUu2aBZHQJ/xfBP9DQZ1fZQoaAZoCWgPQwibkUHuYvBxQJSGlFKUaBVLtGgWR0Cf8a+AEt/XdX2UKGgGaAloD0MIqKYk6zAsckCUhpRSlGgVS55oFkdAn/HHvttygnV9lChoBmgJaA9DCCkjLgDNiHJAlIaUUpRoFUukaBZHQJ/xzPnjhk11fZQoaAZoCWgPQwj4+e/BKztyQJSGlFKUaBVLsmgWR0Cf8dxyGSIQdX2UKGgGaAloD0MIO29js+PNcECUhpRSlGgVS5loFkdAn/MD5GjKxXV9lChoBmgJaA9DCCulZ3qJ73BAlIaUUpRoFUvQaBZHQJ/zGIYWLxZ1fZQoaAZoCWgPQwjD1QEQd7hwQJSGlFKUaBVNZQFoFkdAn/NUHD766HV9lChoBmgJaA9DCASqfxAJeXBAlIaUUpRoFUvDaBZHQJ/zm0ngHeJ1fZQoaAZoCWgPQwjNH9Pa9ExyQJSGlFKUaBVLq2gWR0Cf86JAdGRWdWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 32,
87
  "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd3339bd9d44d85fca1558af9029b45d4fb7bdd305193abfafa2a505f0f030b5
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a33919ae4be4d13eb75bccd75a38184ae5880908ed5632cb6a9159e0db2bb20b
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7568ef6e03fccb4afc458d98ec039e378168d8fbb241e24631f6b3c53976b68e
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:613f16d4a1027fde48b530b31a9143470cb45058e2fd0a4c257de9ec91de8753
3
+ size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- Python: 3.8.16
3
- Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu116
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 286.48139433157866, "std_reward": 14.702036658355752, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T13:07:38.733445"}
 
1
+ {"mean_reward": 284.1287979657117, "std_reward": 19.828714644328862, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T20:06:22.071633"}