metadata
base_model: dunzhang/stella_en_1.5B_v5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:693000
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Paracrystalline materials are defined as having short and medium range
ordering in their lattice (similar to the liquid crystal phases) but
lacking crystal-like long-range ordering at least in one direction.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Paracrystalline
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Øystein Dahle
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Makis Belevonis
- source_sentence: >-
Hạ Trạch is a commune ( xã ) and village in Bố Trạch District , Quảng Bình
Province , in Vietnam . Category : Populated places in Quang Binh
Province Category : Communes of Quang Binh Province
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: The Taill of how this forsaid Tod maid his Confessioun to Freir
Wolf Waitskaith
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Hạ Trạch
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Tadaxa
- source_sentence: >-
The Golden Mosque (سنهرى مسجد, Sunehri Masjid) is a mosque in Old Delhi.
It is located outside the southwestern corner of Delhi Gate of the Red
Fort, opposite the Netaji Subhash Park.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Algorithm
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Golden Mosque (Red Fort)
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Parnaso Español
- source_sentence: >-
Unibank, S.A. is one of Haiti's two largest private commercial banks. The
bank was founded in 1993 by a group of Haitian investors and is the main
company of "Groupe Financier National (GFN)". It opened its first office
in July 1993 in downtown Port-au-Prince and has 50 branches throughout the
country as of the end of 2016.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Sky TG24
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Ghomijeh
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Unibank (Haiti)
- source_sentence: >-
The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra
established in 1930. It was founded as the Moscow Radio Symphony
Orchestra, and served as the official symphony for the Soviet All-Union
Radio network. Following the dissolution of the, Soviet Union in 1991, the
orchestra was renamed in 1993 by the Russian Ministry of Culture in
recognition of the central role the music of Tchaikovsky plays in its
repertoire. The current music director is Vladimir Fedoseyev, who has been
in that position since 1974.
sentences:
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Harald J.W. Mueller-Kirsten
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Sierra del Lacandón
- >-
Instruct: Given a web search query, retrieve relevant passages that
answer the query.
Query: Tchaikovsky Symphony Orchestra
model-index:
- name: SentenceTransformer based on dunzhang/stella_en_1.5B_v5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9447811447811448
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9686868686868687
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9764309764309764
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9811447811447811
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9447811447811448
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3228956228956229
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19528619528619526
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09811447811447811
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9447811447811448
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9686868686868687
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9764309764309764
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9811447811447811
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9636993273003078
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9580071882849661
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9586207391258978
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.9444444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.97003367003367
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9764309764309764
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9824915824915825
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9444444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32334455667789
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19528619528619529
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09824915824915824
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9444444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.97003367003367
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9764309764309764
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9824915824915825
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9639446842698776
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9579490673935119
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9584482053349265
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.9437710437710438
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.967003367003367
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9723905723905724
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9801346801346801
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9437710437710438
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.322334455667789
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19447811447811444
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09801346801346802
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9437710437710438
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.967003367003367
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9723905723905724
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9801346801346801
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9623908732460177
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9566718775052107
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9572829070357247
name: Cosine Map@100
SentenceTransformer based on dunzhang/stella_en_1.5B_v5
This is a sentence-transformers model finetuned from dunzhang/stella_en_1.5B_v5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: dunzhang/stella_en_1.5B_v5
- Maximum Sequence Length: 8096 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8096, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra established in 1930. It was founded as the Moscow Radio Symphony Orchestra, and served as the official symphony for the Soviet All-Union Radio network. Following the dissolution of the, Soviet Union in 1991, the orchestra was renamed in 1993 by the Russian Ministry of Culture in recognition of the central role the music of Tchaikovsky plays in its repertoire. The current music director is Vladimir Fedoseyev, who has been in that position since 1974.',
'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Tchaikovsky Symphony Orchestra',
'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Sierra del Lacandón',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9448 |
cosine_accuracy@3 | 0.9687 |
cosine_accuracy@5 | 0.9764 |
cosine_accuracy@10 | 0.9811 |
cosine_precision@1 | 0.9448 |
cosine_precision@3 | 0.3229 |
cosine_precision@5 | 0.1953 |
cosine_precision@10 | 0.0981 |
cosine_recall@1 | 0.9448 |
cosine_recall@3 | 0.9687 |
cosine_recall@5 | 0.9764 |
cosine_recall@10 | 0.9811 |
cosine_ndcg@10 | 0.9637 |
cosine_mrr@10 | 0.958 |
cosine_map@100 | 0.9586 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9444 |
cosine_accuracy@3 | 0.97 |
cosine_accuracy@5 | 0.9764 |
cosine_accuracy@10 | 0.9825 |
cosine_precision@1 | 0.9444 |
cosine_precision@3 | 0.3233 |
cosine_precision@5 | 0.1953 |
cosine_precision@10 | 0.0982 |
cosine_recall@1 | 0.9444 |
cosine_recall@3 | 0.97 |
cosine_recall@5 | 0.9764 |
cosine_recall@10 | 0.9825 |
cosine_ndcg@10 | 0.9639 |
cosine_mrr@10 | 0.9579 |
cosine_map@100 | 0.9584 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9438 |
cosine_accuracy@3 | 0.967 |
cosine_accuracy@5 | 0.9724 |
cosine_accuracy@10 | 0.9801 |
cosine_precision@1 | 0.9438 |
cosine_precision@3 | 0.3223 |
cosine_precision@5 | 0.1945 |
cosine_precision@10 | 0.098 |
cosine_recall@1 | 0.9438 |
cosine_recall@3 | 0.967 |
cosine_recall@5 | 0.9724 |
cosine_recall@10 | 0.9801 |
cosine_ndcg@10 | 0.9624 |
cosine_mrr@10 | 0.9567 |
cosine_map@100 | 0.9573 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_eval_batch_size
: 4gradient_accumulation_steps
: 4learning_rate
: 2e-05max_steps
: 1500lr_scheduler_type
: cosinewarmup_ratio
: 0.1warmup_steps
: 5bf16
: Truetf32
: Trueoptim
: adamw_torch_fusedgradient_checkpointing
: Truegradient_checkpointing_kwargs
: {'use_reentrant': False}batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 1500lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 5log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: {'use_reentrant': False}include_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cosine_map@100 |
---|---|---|---|---|
0.0185 | 100 | 0.4835 | 0.0751 | 0.9138 |
0.0369 | 200 | 0.0646 | 0.0590 | 0.9384 |
0.0554 | 300 | 0.0594 | 0.0519 | 0.9462 |
0.0739 | 400 | 0.0471 | 0.0483 | 0.9514 |
0.0924 | 500 | 0.0524 | 0.0455 | 0.9531 |
0.1108 | 600 | 0.0435 | 0.0397 | 0.9546 |
0.1293 | 700 | 0.0336 | 0.0394 | 0.9549 |
0.1478 | 800 | 0.0344 | 0.0374 | 0.9565 |
0.1662 | 900 | 0.0393 | 0.0361 | 0.9568 |
0.1847 | 1000 | 0.0451 | 0.0361 | 0.9578 |
0.2032 | 1100 | 0.0278 | 0.0358 | 0.9568 |
0.2216 | 1200 | 0.0332 | 0.0356 | 0.9572 |
0.2401 | 1300 | 0.0317 | 0.0354 | 0.9575 |
0.2586 | 1400 | 0.026 | 0.0355 | 0.9574 |
0.2771 | 1500 | 0.0442 | 0.0355 | 0.9573 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}