Evgeneus's picture
update model card README.md
7e4b1da
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.875445994161531
          - name: Recall
            type: recall
            value: 0.9058060185703098
          - name: F1
            type: f1
            value: 0.8903672751264571
          - name: Accuracy
            type: accuracy
            value: 0.9763292928971993

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0845
  • Precision: 0.8754
  • Recall: 0.9058
  • F1: 0.8904
  • Accuracy: 0.9763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2529 1.0 878 0.0845 0.8754 0.9058 0.8904 0.9763

Framework versions

  • Transformers 4.13.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.16.1
  • Tokenizers 0.10.3