|
--- |
|
pipeline_tag: audio-classification |
|
--- |
|
|
|
# Model Introduction |
|
|
|
## Highlight |
|
- The model is based on wav2vec2-base and fine-tuned with iemocap and Emotional Speech Dataset (ESD) data, so it supports Chinese and English audio. |
|
- The accuracy is as high as 92.9% |
|
- The model card shows only part of the source code.See Files and Versions for details |
|
- The model can predict the emotion of anger |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66690b1773d203101159bb96/QULPUWRcNuKEyGbN0by0g.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66690b1773d203101159bb96/EBVUV9R9TT3E22MFk8bA0.png) |
|
|
|
#### Some details are as follows |
|
```python |
|
import logging |
|
import pathlib |
|
import re |
|
import sys |
|
import time |
|
import csv |
|
from dataclasses import dataclass, field |
|
from typing import Any, Callable, Dict, List, Optional, Set, Union |
|
|
|
import datasets |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from packaging import version |
|
from torch.cuda.amp import GradScaler, autocast |
|
|
|
import librosa |
|
from lang_trans import arabic |
|
from datasets import Dataset |
|
|
|
import soundfile as sf |
|
from model import Wav2Vec2ForCTCnCLS |
|
from transformers.trainer_utils import get_last_checkpoint |
|
|
|
from transformers import ( |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
Wav2Vec2CTCTokenizer, |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2Processor, |
|
is_apex_available, |
|
trainer_utils, |
|
) |
|
|
|
|
|
local_model_path = "local_model" |
|
|
|
if is_apex_available(): |
|
from apex import amp |
|
|
|
if version.parse(torch.__version__) >= version.parse("1.6"): |
|
_is_native_amp_available = True |
|
from torch.cuda.amp import autocast |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
@dataclass |
|
class TrainingArguments(TrainingArguments): |
|
output_dir: str = field( |
|
default="output/angry_tmp", metadata={"help": "The store of your output."}) |
|
do_predict: bool = field( |
|
default=True, metadata={"help": "The store of your output."}) |
|
do_eval: bool = field( |
|
default=False, metadata={"help": "The store of your output."}) |
|
overwrite_output_dir: str = field( |
|
default='overwrite_output_dir', metadata={"help": "The store of your output."} ) |
|
per_device_eval_batch_size: int = field( |
|
default=2, metadata={"help": "The store of your output."}) |
|
warmup_ratio: float = field( |
|
default=0.1, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."} |
|
) |
|
|
|
|
|
|
|
@dataclass |
|
class DataCollatorCTCWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor (:class:`~transformers.Wav2Vec2Processor`) |
|
The processor used for proccessing the data. |
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
max_length (:obj:`int`, `optional`): |
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). |
|
max_length_labels (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` returned list and optionally padding length (see above). |
|
pad_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
""" |
|
|
|
processor: Wav2Vec2Processor |
|
padding: Union[bool, str] = True |
|
max_length: Optional[int] = None |
|
max_length_labels: Optional[int] = None |
|
pad_to_multiple_of: Optional[int] = None |
|
pad_to_multiple_of_labels: Optional[int] = None |
|
audio_only = False |
|
duration = 6 |
|
sample_rate = 16000 |
|
|
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: |
|
# split inputs and labels since they have to be of different lenghts and need |
|
# different padding methods |
|
input_features = [{"input_values": feature["input_values"]} for feature in features] |
|
|
|
batch = self.processor.pad( |
|
input_features, |
|
padding=self.padding, |
|
# max_length=self.max_length, |
|
max_length=self.duration*self.sample_rate, |
|
pad_to_multiple_of=self.pad_to_multiple_of, |
|
return_tensors="pt", |
|
) |
|
|
|
return batch |
|
|
|
|
|
class CTCTrainer(Trainer): |
|
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]: |
|
self.use_amp = False |
|
self.use_apex = False |
|
self.deepspeed = False |
|
self.scaler = GradScaler() |
|
for k, v in inputs.items(): |
|
if isinstance(v, torch.Tensor): |
|
kwargs = dict(device=self.args.device) |
|
if self.deepspeed and inputs[k].dtype != torch.int64: |
|
kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype())) |
|
inputs[k] = v.to(**kwargs) |
|
|
|
if self.args.past_index >= 0 and self._past is not None: |
|
inputs["mems"] = self._past |
|
|
|
return inputs |
|
|
|
|
|
def create_dataset(audio_path): |
|
data = { |
|
'file': [audio_path] |
|
} |
|
dataset = Dataset.from_dict(data) |
|
return dataset |
|
|
|
|
|
def exeute_angry_predict(audio_path): |
|
# See all possible arguments in src/transformers/training_args.py |
|
# or by passing the --help flag to this script. |
|
# We now keep distinct sets of args, for a cleaner separation of concerns. |
|
|
|
target_sr = 16000 |
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
configure_logger(model_args, training_args) |
|
|
|
|
|
orthography = Orthography.from_name(data_args.orthography.lower()) |
|
orthography.tokenizer = model_args.tokenizer |
|
processor = orthography.create_processor(model_args) |
|
|
|
if data_args.dataset_name == 'emotion': |
|
val_dataset = create_dataset(audio_path) |
|
cls_label_map = {"neutral":0, "angry":1} |
|
|
|
model = Wav2Vec2ForCTCnCLS.from_pretrained( |
|
local_model_path, |
|
gradient_checkpointing=True, # training_args.gradient_checkpointing, |
|
cls_len=len(cls_label_map), |
|
) |
|
|
|
def prepare_example(example, audio_only=False): # TODO(elgeish) make use of multiprocessing? |
|
example["speech"], example["sampling_rate"] = librosa.load(example[data_args.speech_file_column], sr=target_sr) |
|
orig_sample_rate = example["sampling_rate"] |
|
target_sample_rate = target_sr |
|
if orig_sample_rate != target_sample_rate: |
|
example["speech"] = librosa.resample(example["speech"], orig_sr=orig_sample_rate, target_sr=target_sample_rate) |
|
if data_args.max_duration_in_seconds is not None: |
|
example["duration_in_seconds"] = len(example["speech"]) / example["sampling_rate"] |
|
return example |
|
|
|
|
|
if training_args.do_predict: |
|
val_dataset = val_dataset.map(prepare_example, fn_kwargs={'audio_only':True}) |
|
|
|
|
|
def prepare_dataset(batch, audio_only=False): |
|
# check that all files have the correct sampling rate |
|
assert ( |
|
len(set(batch["sampling_rate"])) == 1 |
|
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." |
|
|
|
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values |
|
return batch |
|
|
|
|
|
if training_args.do_predict: |
|
val_dataset = val_dataset.map( |
|
prepare_dataset, |
|
fn_kwargs={'audio_only':True}, |
|
batch_size=training_args.per_device_eval_batch_size, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
|
|
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) |
|
|
|
if model_args.freeze_feature_extractor: |
|
model.freeze_feature_extractor() |
|
|
|
trainer = CTCTrainer( |
|
model=model, |
|
args=training_args, |
|
eval_dataset=val_dataset, |
|
tokenizer=processor.feature_extractor, |
|
) |
|
|
|
|
|
if training_args.do_predict: |
|
logger.info('******* Predict ********') |
|
data_collator.audio_only=True |
|
results= {} |
|
result= '' |
|
predictions, labels, metrics = trainer.predict(val_dataset, metric_key_prefix="predict") |
|
logits_ctc, logits_cls = predictions |
|
pred_ids = np.argmax(logits_cls, axis=-1) |
|
if pred_ids==0: |
|
result = "neutral" |
|
if pred_ids==1: |
|
result = "angry" |
|
results[audio_path] = result |
|
print("results", results) |
|
|
|
|
|
if __name__ == "__main__": |
|
audio_path = 'audio.mp3' |
|
exeute_angry_predict(audio_path) |
|
``` |