bert-qa-mash-covid / README.md
Eurosmart's picture
Model save
bad7725 verified
|
raw
history blame
3.86 kB
metadata
license: apache-2.0
base_model: google/bigbird-roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: bert-qa-mash-covid
    results: []

bert-qa-mash-covid

This model is a fine-tuned version of google/bigbird-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
1.5553 1.0 657 1.0374
1.0747 2.0 1314 0.9805
0.8656 3.0 1971 1.0557
0.5949 4.0 2628 1.1109
0.4757 5.0 3285 1.1982
0.3937 6.0 3942 1.3565
0.2476 7.0 4599 1.4817
0.2064 8.0 5256 1.5591
0.191 9.0 5913 2.0118
0.1382 10.0 6570 2.1637
0.1161 11.0 7227 2.1896
0.1066 12.0 7884 2.3879
0.1017 13.0 8541 2.6023
0.0901 14.0 9198 2.8120
0.0859 15.0 9855 2.8291
0.0666 16.0 10512 2.8947
0.0598 17.0 11169 3.1198
0.0459 18.0 11826 3.0020
0.0533 19.0 12483 3.1257
0.0546 20.0 13140 3.1757
0.0487 21.0 13797 3.4253
0.0424 22.0 14454 3.2998
0.0465 23.0 15111 3.4184
0.0298 24.0 15768 3.6026
0.038 25.0 16425 3.7422
0.032 26.0 17082 3.6208
0.0247 27.0 17739 3.6113
0.0283 28.0 18396 3.8404
0.0237 29.0 19053 3.6326
0.017 30.0 19710 3.8710
0.0195 31.0 20367 3.8173
0.0205 32.0 21024 3.7101
0.0187 33.0 21681 3.8000
0.0236 34.0 22338 3.7253
0.0251 35.0 22995 3.7891
0.0399 36.0 23652 3.8655
0.0355 37.0 24309 3.7444
0.0214 38.0 24966 3.9477
0.0132 39.0 25623 4.1278
0.019 40.0 26280 4.1814
0.0227 41.0 26937 3.9744
0.0161 42.0 27594 4.1047
0.0165 43.0 28251 4.2342
0.0162 44.0 28908 4.1003
0.013 45.0 29565 4.2922
0.0158 46.0 30222 4.1349
0.0118 47.0 30879 4.1534
0.0155 48.0 31536 4.1656
0.0167 49.0 32193 4.1763
0.0205 50.0 32850 4.1822

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2