|
import pandas as pd
|
|
import streamlit as st
|
|
import joblib
|
|
|
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.compose import ColumnTransformer
|
|
|
|
|
|
df = pd.read_csv('train.csv')
|
|
df.columns = df.columns.str.replace(r'[\s\.]', '_', regex=True)
|
|
|
|
|
|
x = df.drop(['id', 'Rings'], axis=1)
|
|
y = df[['Rings']]
|
|
|
|
|
|
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
|
|
|
|
|
|
preprocessor = ColumnTransformer(
|
|
transformers=[
|
|
('num', StandardScaler(), ['Length', 'Diameter', 'Height', 'Whole_weight', 'Whole_weight_1', 'Whole_weight_2', 'Shell_weight']),
|
|
('cat', OneHotEncoder(), ['Sex'])
|
|
]
|
|
)
|
|
|
|
|
|
def rings_pred(Sex, Length, Diameter, Height, Whole_weight, Whole_weight_1, Whole_weight_2, Shell_weight):
|
|
input_data = pd.DataFrame({
|
|
'Sex': [Sex],
|
|
'Length': [Length],
|
|
'Diameter': [Diameter],
|
|
'Height': [Height],
|
|
'Whole_weight': [Whole_weight],
|
|
'Whole_weight_1': [Whole_weight_1],
|
|
'Whole_weight_2': [Whole_weight_2],
|
|
'Shell_weight': [Shell_weight]
|
|
})
|
|
|
|
|
|
input_data_transformed = preprocessor.fit_transform(input_data)
|
|
|
|
model = joblib.load('Abalone.pkl')
|
|
|
|
prediction = model.predict(input_data_transformed)
|
|
return float(prediction[0])
|
|
|
|
st.title("Abalone Veri seti ile Yaş Tahmini Regresyon Modeli")
|
|
st.write("Veri Gir")
|
|
|
|
Sex = st.selectbox('Sex', df['Sex'].unique())
|
|
Length = st.selectbox('Length', df['Length'].unique())
|
|
Diameter = st.selectbox('Diameter', df['Diameter'].unique())
|
|
Height = st.selectbox('Height', df['Height'].unique())
|
|
Whole_weight = st.selectbox('Whole_weight', df['Whole_weight'].unique())
|
|
Whole_weight_1 = st.selectbox('Whole_weight_1', df['Whole_weight_1'].unique())
|
|
Whole_weight_2 = st.selectbox('Whole_weight_2', df['Whole_weight_2'].unique())
|
|
Shell_weight = st.selectbox('Shell_weight', df['Shell_weight'].unique())
|
|
|
|
if st.button('Predict'):
|
|
rings = rings_pred(Sex, Length, Diameter, Height, Whole_weight, Whole_weight_1, Whole_weight_2, Shell_weight)
|
|
st.write(f'The predicted rings is: {rings:.2f}') |