ErenKontas commited on
Commit
c614107
·
verified ·
1 Parent(s): ed516c3

Upload 4 files

Browse files
Files changed (4) hide show
  1. Abalone.pkl +3 -0
  2. app.py +63 -0
  3. requirements.txt +4 -0
  4. train.csv +0 -0
Abalone.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8c3c068ccd32bfbd55550c013b4d1d0664fae8079f0c2d15379032b5701589b
3
+ size 1914064
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ import joblib
4
+
5
+ from sklearn.preprocessing import StandardScaler, OneHotEncoder
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.compose import ColumnTransformer
8
+
9
+ # Veriyi yükleme ve sütun isimlerini güncelleme
10
+ df = pd.read_csv('train.csv')
11
+ df.columns = df.columns.str.replace(r'[\s\.]', '_', regex=True)
12
+
13
+ # Bağımlı ve bağımsız değişkenlerin seçimi
14
+ x = df.drop(['id', 'Rings'], axis=1)
15
+ y = df[['Rings']]
16
+
17
+ # Eğitim ve test verilerini ayırma
18
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
19
+
20
+ # Ön işleme (StandardScaler ve OneHotEncoder)
21
+ preprocessor = ColumnTransformer(
22
+ transformers=[
23
+ ('num', StandardScaler(), ['Length', 'Diameter', 'Height', 'Whole_weight', 'Whole_weight_1', 'Whole_weight_2', 'Shell_weight']),
24
+ ('cat', OneHotEncoder(), ['Sex'])
25
+ ]
26
+ )
27
+
28
+ # Streamlit uygulaması
29
+ def rings_pred(Sex, Length, Diameter, Height, Whole_weight, Whole_weight_1, Whole_weight_2, Shell_weight):
30
+ input_data = pd.DataFrame({
31
+ 'Sex': [Sex],
32
+ 'Length': [Length],
33
+ 'Diameter': [Diameter],
34
+ 'Height': [Height],
35
+ 'Whole_weight': [Whole_weight],
36
+ 'Whole_weight_1': [Whole_weight_1],
37
+ 'Whole_weight_2': [Whole_weight_2],
38
+ 'Shell_weight': [Shell_weight]
39
+ })
40
+
41
+
42
+ input_data_transformed = preprocessor.fit_transform(input_data)
43
+
44
+ model = joblib.load('Abalone.pkl')
45
+
46
+ prediction = model.predict(input_data_transformed)
47
+ return float(prediction[0])
48
+
49
+ st.title("Abalone Veri seti ile Yaş Tahmini Regresyon Modeli")
50
+ st.write("Veri Gir")
51
+
52
+ Sex = st.selectbox('Sex', df['Sex'].unique())
53
+ Length = st.selectbox('Length', df['Length'].unique())
54
+ Diameter = st.selectbox('Diameter', df['Diameter'].unique())
55
+ Height = st.selectbox('Height', df['Height'].unique())
56
+ Whole_weight = st.selectbox('Whole_weight', df['Whole_weight'].unique())
57
+ Whole_weight_1 = st.selectbox('Whole_weight_1', df['Whole_weight_1'].unique())
58
+ Whole_weight_2 = st.selectbox('Whole_weight_2', df['Whole_weight_2'].unique())
59
+ Shell_weight = st.selectbox('Shell_weight', df['Shell_weight'].unique())
60
+
61
+ if st.button('Predict'):
62
+ rings = rings_pred(Sex, Length, Diameter, Height, Whole_weight, Whole_weight_1, Whole_weight_2, Shell_weight)
63
+ st.write(f'The predicted rings is: {rings:.2f}')
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ scikit-learn
3
+ pandas
4
+ tensorflow
train.csv ADDED
The diff for this file is too large to render. See raw diff