|
--- |
|
license: gemma |
|
pipeline_tag: text-generation |
|
tags: |
|
- ONNX |
|
- DML |
|
- DirectML |
|
- ONNXRuntime |
|
- gemma |
|
- google |
|
- conversational |
|
- custom_code |
|
inference: false |
|
language: |
|
- en |
|
--- |
|
# Gemma-2B-Instruct-ONNX |
|
|
|
## Model Summary |
|
This repository contains optimized versions of the [gemma-2b-it](https://huggingface.co/google/gemma-2b-it) model, designed to accelerate inference using ONNX Runtime. These optimizations are specifically tailored for CPU and DirectML. DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, offering GPU acceleration across a wide range of supported hardware and drivers, including those from AMD, Intel, NVIDIA, and Qualcomm. |
|
|
|
## ONNX Models |
|
|
|
Here are some of the optimized configurations we have added: |
|
- **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ. |
|
- **ONNX model for int4 CPU and Mobile:** ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4. |
|
|
|
## Usage |
|
|
|
### Installation and Setup |
|
|
|
To use the Gemma-2B-Instruct-ONNX model on Windows with DirectML, follow these steps: |
|
|
|
1. **Create and activate a Conda environment:** |
|
```sh |
|
conda create -n onnx python=3.10 |
|
conda activate onnx |
|
``` |
|
|
|
2. **Install Git LFS:** |
|
```sh |
|
winget install -e --id GitHub.GitLFS |
|
``` |
|
|
|
3. **Install Hugging Face CLI:** |
|
```sh |
|
pip install huggingface-hub[cli] |
|
``` |
|
|
|
4. **Download the model:** |
|
```sh |
|
huggingface-cli download EmbeddedLLM/gemma-2b-it-onnx --include="onnx/directml/*" --local-dir .\gemma-2b-it-onnx |
|
``` |
|
|
|
5. **Install necessary Python packages:** |
|
```sh |
|
pip install numpy==1.26.4 |
|
pip install onnxruntime-directml |
|
pip install --pre onnxruntime-genai-directml |
|
``` |
|
|
|
6. **Install Visual Studio 2015 runtime:** |
|
```sh |
|
conda install conda-forge::vs2015_runtime |
|
``` |
|
|
|
7. **Download the example script:** |
|
```sh |
|
Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py" |
|
``` |
|
|
|
8. **Run the example script:** |
|
```sh |
|
python phi3-qa.py -m .\gemma-2b-it-onnx |
|
``` |
|
|
|
### Hardware Requirements |
|
|
|
**Minimum Configuration:** |
|
- **Windows:** DirectX 12-capable GPU (AMD/Nvidia) |
|
- **CPU:** x86_64 / ARM64 |
|
|
|
**Tested Configurations:** |
|
- **GPU:** AMD Ryzen 8000 Series iGPU (DirectML) |
|
- **CPU:** AMD Ryzen CPU |
|
|
|
## Resources and Technical Documentation |
|
|
|
- [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) |
|
- [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) |
|
- [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-it-gg-hf) |
|
|
|
## Terms of Use |
|
|
|
- [Terms](https://www.kaggle.com/models/google/gemma/license/consent) |