metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: twitter-emotion-deberta-v3-base
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.937
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9255
verified: true
- name: Precision Macro
type: precision
value: 0.8915483806374028
verified: true
- name: Precision Micro
type: precision
value: 0.9255
verified: true
- name: Precision Weighted
type: precision
value: 0.9286522707274408
verified: true
- name: Recall Macro
type: recall
value: 0.875946770128528
verified: true
- name: Recall Micro
type: recall
value: 0.9255
verified: true
- name: Recall Weighted
type: recall
value: 0.9255
verified: true
- name: F1 Macro
type: f1
value: 0.8790048313120858
verified: true
- name: F1 Micro
type: f1
value: 0.9255
verified: true
- name: F1 Weighted
type: f1
value: 0.92449885920049
verified: true
- name: loss
type: loss
value: 0.16804923117160797
verified: true
twitter-emotion-deberta-v3-base
This model is a fine-tuned version of DeBERTa-v3. It achieves the following results on the evaluation set:
- Loss: 0.1474
- Accuracy: 0.937
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 80
- eval_batch_size: 80
- lr_scheduler_type: linear
- num_epochs: 6.0
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3