File size: 2,655 Bytes
2065cb7 53e91b7 2065cb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: mit
datasets:
- emhaihsan/quran-indonesia-tafseer-translation
language:
- id
base_model:
- Qwen/Qwen2.5-3B-Instruct
---
# Model Card for Fine-Tuned Qwen2.5-3B-Instruct
This is a fine-tuned version of the [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) model. The fine-tuning process utilized the [Quran Indonesia Tafseer Translation](https://huggingface.co/datasets/emhaihsan/quran-indonesia-tafseer-translation) dataset, which provides translations and tafsir in Bahasa Indonesia for the Quran.
## Model Details
### Model Description
- **Base Model:** [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
- **Fine-Tuned By:** Ellbendl Satria
- **Dataset:** [emhaihsan/quran-indonesia-tafseer-translation](https://huggingface.co/datasets/emhaihsan/quran-indonesia-tafseer-translation)
- **Language:** Bahasa Indonesia
- **License:** MIT
This model is designed for NLP tasks involving Quranic text in Bahasa Indonesia, including understanding translations and tafsir.
## Uses
### Direct Use
This model can be used for applications requiring the understanding, summarization, or retrieval of Quranic translations and tafsir in Bahasa Indonesia.
### Downstream Use
It is suitable for fine-tuning on tasks such as:
- Quranic text summarization
- Question answering systems related to Islamic knowledge
- Educational tools for learning Quranic content in Indonesian
### Out-of-Scope Use
This model is not suitable for general-purpose conversation or tasks unrelated to Quranic and Islamic texts.
## Bias, Risks, and Limitations
### Biases
- The model inherits any biases present in the dataset, which is specific to Islamic translations and tafsir in Bahasa Indonesia.
### Limitations
- The model is tailored for Quranic and Islamic context, and its performance outside this domain may be suboptimal.
- It may not accurately handle nuanced or non-standard interpretations of Quranic text.
### Recommendations
- Users should ensure that applications using this model respect cultural and religious sensitivities.
- Results should be verified by domain experts for critical applications.
## How to Get Started with the Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Ellbendls/Qwen-2.5-3b-Quran-GGUF")
model = AutoModelForCausalLM.from_pretrained("Ellbendls/Qwen-2.5-3b-Quran-GGUF")
input_text = "Apa tafsir dari Surat Al-Fatihah ayat 1?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|