Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,69 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
datasets:
|
5 |
+
- emhaihsan/quran-indonesia-tafseer-translation
|
6 |
+
language:
|
7 |
+
- id
|
8 |
+
base_model:
|
9 |
+
- Qwen/Qwen2.5-3B-Instruct
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for Fine-Tuned Qwen2.5-3B-Instruct
|
13 |
+
|
14 |
+
This is a fine-tuned version of the [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) model. The fine-tuning process utilized the [Quran Indonesia Tafseer Translation](https://huggingface.co/datasets/emhaihsan/quran-indonesia-tafseer-translation) dataset, which provides translations and tafsir in Bahasa Indonesia for the Quran.
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
|
18 |
+
### Model Description
|
19 |
+
|
20 |
+
- **Base Model:** [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
|
21 |
+
- **Fine-Tuned By:** Ellbendl Satria
|
22 |
+
- **Dataset:** [emhaihsan/quran-indonesia-tafseer-translation](https://huggingface.co/datasets/emhaihsan/quran-indonesia-tafseer-translation)
|
23 |
+
- **Language:** Bahasa Indonesia
|
24 |
+
- **License:** MIT
|
25 |
+
|
26 |
+
This model is designed for NLP tasks involving Quranic text in Bahasa Indonesia, including understanding translations and tafsir.
|
27 |
+
|
28 |
+
## Uses
|
29 |
+
|
30 |
+
### Direct Use
|
31 |
+
|
32 |
+
This model can be used for applications requiring the understanding, summarization, or retrieval of Quranic translations and tafsir in Bahasa Indonesia.
|
33 |
+
|
34 |
+
### Downstream Use
|
35 |
+
|
36 |
+
It is suitable for fine-tuning on tasks such as:
|
37 |
+
- Quranic text summarization
|
38 |
+
- Question answering systems related to Islamic knowledge
|
39 |
+
- Educational tools for learning Quranic content in Indonesian
|
40 |
+
|
41 |
+
### Out-of-Scope Use
|
42 |
+
|
43 |
+
This model is not suitable for general-purpose conversation or tasks unrelated to Quranic and Islamic texts.
|
44 |
+
|
45 |
+
## Bias, Risks, and Limitations
|
46 |
+
|
47 |
+
### Biases
|
48 |
+
- The model inherits any biases present in the dataset, which is specific to Islamic translations and tafsir in Bahasa Indonesia.
|
49 |
+
|
50 |
+
### Limitations
|
51 |
+
- The model is tailored for Quranic and Islamic context, and its performance outside this domain may be suboptimal.
|
52 |
+
- It may not accurately handle nuanced or non-standard interpretations of Quranic text.
|
53 |
+
|
54 |
+
### Recommendations
|
55 |
+
- Users should ensure that applications using this model respect cultural and religious sensitivities.
|
56 |
+
- Results should be verified by domain experts for critical applications.
|
57 |
+
|
58 |
+
## How to Get Started with the Model
|
59 |
+
|
60 |
+
```python
|
61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
62 |
+
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("EllbendlSatria/fine-tuned-qwen2.5-3b-indonesian-tafseer")
|
64 |
+
model = AutoModelForCausalLM.from_pretrained("EllbendlSatria/fine-tuned-qwen2.5-3b-indonesian-tafseer")
|
65 |
+
|
66 |
+
input_text = "Apa tafsir dari Surat Al-Fatihah ayat 1?"
|
67 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
68 |
+
outputs = model.generate(**inputs)
|
69 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|