dev-ner-ontonote-bert-finetuned
This model is a fine-tuned version of bert-base-cased on the dev-ner-ontone dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0241
- Precision: 0.9404
- Recall: 0.9668
- F1: 0.9535
- Accuracy: 0.9937
Model description
NER Model to identify one or more of the following entities from any given sentence
['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY', 'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
Intended uses & limitations
Can be used for named entity recognition for information extraction/retrieval. The limitation of this work is that since it uses BERT as it's pretrained backbone all the limitations and biases there get carried forward in this model.
Also, in the training data, we had only a very small number of examples of a few entities. To be precise this is the distribution of the data
{'GPE': 2268, 'PERSON': 2020, 'ORG': 1740, 'DATE': 1507, 'CARDINAL': 938, 'NORP': 847, 'MONEY': 274, 'ORDINAL': 232, 'TIME': 214, 'LOC': 204, 'PERCENT': 177, 'EVENT': 143, 'WORK_OF_ART': 142, 'FAC': 115, 'QUANTITY': 100, 'PRODUCT': 72, 'LAW': 40, 'LANGUAGE': 33}
Hence tokenwise, the model will underperform on entities related to language or law etc.
Training and evaluation data
Here is a snapshot of the dataset stats
DatasetDict({
train: Dataset({
features: ['text', 'entities', 'entities-suggestion', 'entities-suggestion-metadata', 'external_id', 'metadata'],
num_rows: 8528
})
validation: Dataset({
features: ['text', 'entities', 'entities-suggestion', 'entities-suggestion-metadata', 'external_id', 'metadata'],
num_rows: 8528
})
})
For more detailed information, refer this page
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 267 | 0.1113 | 0.7576 | 0.7973 | 0.7769 | 0.9689 |
0.2811 | 2.0 | 534 | 0.0559 | 0.8732 | 0.9087 | 0.8906 | 0.9847 |
0.2811 | 3.0 | 801 | 0.0360 | 0.9147 | 0.9478 | 0.9309 | 0.9904 |
0.063 | 4.0 | 1068 | 0.0275 | 0.9333 | 0.9600 | 0.9465 | 0.9928 |
0.063 | 5.0 | 1335 | 0.0241 | 0.9404 | 0.9668 | 0.9535 | 0.9937 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.13.3
- Downloads last month
- 9
Model tree for ElisonSherton/dev-ner-ontonote-bert-finetuned
Base model
google-bert/bert-base-cased