File size: 2,614 Bytes
efcb92b
 
 
ca83008
 
efcb92b
 
 
 
 
 
 
 
 
 
 
ca83008
efcb92b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: other
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: segformer-finetuned-lane-1k-steps
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-finetuned-lane-1k-steps

This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-cityscapes-512-1024](https://huggingface.co/nvidia/segformer-b0-finetuned-cityscapes-512-1024) on the Efferbach/lane_master dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0548
- Mean Iou: 0.0708
- Mean Accuracy: 0.1236
- Overall Accuracy: 0.1217
- Accuracy Background: nan
- Accuracy Left: 0.1893
- Accuracy Right: 0.0578
- Iou Background: 0.0
- Iou Left: 0.1581
- Iou Right: 0.0544

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
| 0.1           | 1.0   | 308  | 0.0862          | 0.0008   | 0.0013        | 0.0012           | nan                 | 0.0025        | 0.0            | 0.0            | 0.0025   | 0.0       |
| 0.0596        | 2.0   | 616  | 0.0597          | 0.0712   | 0.1126        | 0.1132           | nan                 | 0.0940        | 0.1313         | 0.0            | 0.0907   | 0.1228    |
| 0.0506        | 3.0   | 924  | 0.0551          | 0.0682   | 0.1171        | 0.1152           | nan                 | 0.1805        | 0.0536         | 0.0            | 0.1539   | 0.0508    |
| 0.0494        | 3.25  | 1000 | 0.0548          | 0.0708   | 0.1236        | 0.1217           | nan                 | 0.1893        | 0.0578         | 0.0            | 0.1581   | 0.0544    |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3