segformer-finetuned-lane-1k-steps

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-cityscapes-512-1024 on the Efferbach/lane_master dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0548
  • Mean Iou: 0.0708
  • Mean Accuracy: 0.1236
  • Overall Accuracy: 0.1217
  • Accuracy Background: nan
  • Accuracy Left: 0.1893
  • Accuracy Right: 0.0578
  • Iou Background: 0.0
  • Iou Left: 0.1581
  • Iou Right: 0.0544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Left Accuracy Right Iou Background Iou Left Iou Right
0.1 1.0 308 0.0862 0.0008 0.0013 0.0012 nan 0.0025 0.0 0.0 0.0025 0.0
0.0596 2.0 616 0.0597 0.0712 0.1126 0.1132 nan 0.0940 0.1313 0.0 0.0907 0.1228
0.0506 3.0 924 0.0551 0.0682 0.1171 0.1152 nan 0.1805 0.0536 0.0 0.1539 0.0508
0.0494 3.25 1000 0.0548 0.0708 0.1236 0.1217 nan 0.1893 0.0578 0.0 0.1581 0.0544

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.