Model Details

MLX implementation of Segment-Anything model this checkopint is the same from facebook/sam-vit-base

Model Usage

import requests
from PIL import Image
from mlxformers import MlxSamModel
from transformers import SamProcessor
from transformers.tokenization_utils import BatchEncoding # Temporary

model = MlxSamModel.from_pretrained("EduardoPacheco/mlx-sam-vit-base")
processor = SamProcessor.from_pretrained("EduardoPacheco/mlx-sam-vit-base")

img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
input_points = [[[450, 600]]] # 2D localization of a window

inputs = processor(raw_image, input_points=input_points, return_tensors="np")
# There's currently a bug when using `return_tensors="np"`
inputs["input_points"] = inputs["input_points"][None]
inputs = BatchEncoding(data=dict(inputs), tensor_type="mlx")

outputs = model(**inputs)
masks = model.post_process_masks(
  masks=outputs.pred_masks,
  original_sizes=mlx_inputs.original_sizes,
  reshaped_input_sizes=mlx_inputs.reshaped_input_sizes,
  pad_size=processor.image_processor.pad_size,
  binarize=False,
)
scores = outputs.iou_scores
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.