JeongwonChoi's picture
Update README.md
df3f2fb verified
---
tags:
- text-generation
license: cc-by-nc-4.0
language:
- ko
base_model: beomi/OPEN-SOLAR-KO-10.7B
pipeline_tag: text-generation
---
# **DataVortexS-10.7B-dpo-v1.9**
<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">
## Our Team
| Research & Engineering | Product Management |
| :--------------------: | :----------------: |
| Kwangseok Yang | Seunghyun Choi |
| Jeongwon Choi | Hyoseok Choi |
## **Model Details**
### **Base Model**
[beomi/OPEN-SOLAR-KO-10.7B](https://huggingface.co/beomi/OPEN-SOLAR-KO-10.7B)
### **Trained On**
- **OS**: Ubuntu 22.04
- **GPU**: H100 80GB 4ea
- **transformers**: v4.36.2
### **Instruction format**
It follows **Alpaca (Chat)** format.
E.g.
```python
text = """\
### System:
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.
### User:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?
### Assistant:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.
### User:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""
```
## **Model Benchmark**
### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**
| Task | 0-shot | 5-shot | 10-shot | 50-shot |
| :--------------- | -----------: | -----------: | -----------: | -----------: |
| kobest_boolq | 0.902418 | 0.904502 | 0.91804 | 0.915893 |
| kobest_copa | 0.815462 | 0.853789 | 0.855721 | 0.866903 |
| kobest_hellaswag | 0.49901 | 0.488796 | 0.484538 | 0.498009 |
| kobest_sentineg | 0.335008 | 0.977325 | 0.979839 | 0.982364 |
| **Average** | **0.637974** | **0.806103** | **0.809534** | **0.815792** |
### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)**
| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
| 55.19 | 53.33 | 62.57 | 49.55 | 49.01 | 61.51 |
## **Implementation Code**
This model contains the chat_template instruction format.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.9")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.9")
messages = [
{"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
{"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
{"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
{"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## **License**
This model is licensed under the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/). which allows others to share and adapt the model for non-commercial purposes.
<div align="center">
<a href="https://edentns.com/">
<img src="./Logo.png" alt="Logo" style="height: 3em;">
</a>
</div>