metadata
tags:
- text-generation
license: cc-by-nc-sa-4.0
language:
- ko
base_model: megastudy/M-SOLAR-10.7B-v1.3
pipeline_tag: text-generation
DataVortexS-10.7B-dpo-v1.2
Our Team
Research & Engineering | Product Management |
---|---|
Kwangseok Yang | Seunghyun Choi |
Jeongwon Choi | Hyoseok Choi |
Model Details
Base Model
Trained On
- OS: Ubuntu 22.04
- GPU: H100 80GB 4ea
- transformers: v4.36.2
Instruction format
It follows Alpaca (Chat) format.
E.g.
text = """\
### System:
λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.
### User:
λνλ―Όκ΅μ μλλ μ΄λμΌ?
### Assistant:
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.
### User:
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?
"""
Model Benchmark
Ko LM Eval Harness
Task | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
kobest_boolq | 0.86665 | 0.932254 | 0.940132 | 0.941561 |
kobest_copa | 0.723415 | 0.780594 | 0.778814 | 0.79982 |
kobest_hellaswag | 0.471639 | 0.466883 | 0.472548 | 0.488648 |
kobest_sentineg | 0.78514 | 0.964734 | 0.972281 | 0.972289 |
Average | 0.711711 | 0.786116 | 0.790944 | 0.80058 |
Ko-LLM-Leaderboard
Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|
56.53 | 52.73 | 64.83 | 52.99 | 58.36 | 53.72 |
Implementation Code
This model contains the chat_template instruction format.
You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.2")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.2")
messages = [
{"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
{"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
{"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
{"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
License
The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.